Pirhua

Implementación de algoritmos de aprendizaje automático para la medición de parámetros de calidad de uva

Pirhua Repository

 

Implementación de algoritmos de aprendizaje automático para la medición de parámetros de calidad de uva

; ; ;

Otros colaboradores:

Tesis; https://purl.org/pe-repo/renati/type#trabajoDeInvestigacion. Sustentada 2021-05.

Abstract

El objetivo del trabajo es desarrollar un sistema con la ayuda de los clasificadores de Machine Learning para la medición de calidad de la uva, con lo que se podrá seleccionar el clasificador más adecuado, con el fin de ayudar a los agricultores a facilitar la labor de control y prevención de plagas y análisis de nutrientes del suelo de cultivo. Para ello, se hace uso desde imágenes en el espacio RGB (Red, Green and Blue) para que, por medio de distintos algoritmos de inteligencia artificial, lograr una estimación del peso y apariencia (color) de los racimos de uva mientras que, para el calibre, se utilizaron técnicas de procesamiento de imágenes. En tanto, la metodología propuesta para la estimación de los parámetros de calidad se compone de tres parámetros principales: estimación del peso, estimación del calibre y apariencia estimación. Por lo demás, las imágenes de las uvas están segmentadas utilizando el Photoshop para mejorar la tarea de estimación en la que parámetro. Por último, la red neural multicapa de perceptrón es utilizada para estimar los pesos y el Support Vector Machine se utiliza como algoritmo final para clasificar los racimos de uva como adecuados o no aptos para la exportación por apariencia. Otro algoritmo como la Convolutional Neural Networks y el aprendizaje por transferencia se utilizan para comparar la precisión del modelo. Se demuestra además que, para el caso particular de uvas Red Globe de la Sociedad Agrícola Saturno S.A., en el caso del Machine Learning, se obtuvo un 78.1% en la estimación de apariencia y un 86.7% para la estimación del peso mientras que, para el caso del Deep Learning, se obtuvo un 90.36% y un 82.79% en las mismas estimaciones. En tanto, se concluye que es viable el uso de algoritmos de aprendizaje automático y procesamiento de imágenes para estimar los parámetros de calidad de uva. Asimismo, se determina que es mejor usar algoritmos de Machine learning cuando no se tiene suficiente data para la estimación del peso.

Files in this item

Acerca del trabajo

 
 
 
 

This item appears in the following Collection(s)

Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional Except where otherwise noted, this item's license is described as Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Search Pirhua

Guides and tutorials

Check the manuals to quote, publish or find content in our institutional repository.

Main catalog

Browse more collections in Biblioteca Central.

My Account