

INFLUENCIA DE LA MATERIA PRIMA EN LAS CARACTERÍSTICAS DE LAS FUNDICIONES GRISES DEL NORTE DEL PERÚ

Erick Vargas-Seminario

Piura, diciembre de 2017

FACULTAD DE INGENIERÍA

Departamento de Ingeniería Mecánico-Eléctrica

Vargas, E. (2017). *Influencia de la materia prima en las características de las fundiciones grises del norte del Perú* (Tesis de licenciatura en Ingeniería Mecánico-Eléctrica). Universidad de Piura. Facultad de Ingeniería. Programa Académico de Ingeniería Mecánico-Eléctrica. Piura, Perú.

EPOSITORIO INSTITUCIONAL

Esta obra está bajo una licencia <u>Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional</u>

<u>Repositorio institucional PIRHUA – Universidad de Piura</u>

UNIVERSIDAD DE PIURA

FACULTAD DE INGENIERÍA

Influencia de la materia prima en las características de las fundiciones grises del norte del Perú

Tesis para optar el Título de Ingeniero Mecánico - Eléctrico

ERICK MIGUEL VARGAS SEMINARIO

Asesor: Dra. Ing. Rosalba Guerrero Aslla

Piura, diciembre 2017

A Dios por regalarme la vida y todo lo que tengo, a mis padres Gloria y Francisco, por confiar siempre en mí y hacerme un hombre de bien, a mi abuelita Elena por darme ánimos y estar siempre presente en mi vida y a Chabelly por su amor y apoyo inquebrantables.

Prólogo

En la región norte se viene experimentando un importante desarrollo industrial en sectores como el minero, petrolero, agroindustrial y pesquero por citar algunos. Este desarrollo genera la necesidad de piezas y componentes mecánicos que son atendidos por el sector metalmecánico y de fabricación de piezas por moldeo, es decir, fundiciones. Uno de los principales requerimientos es el de piezas de fundición gris tanto laminar como esferoidal, y aunque existen varias empresas fundidoras en el norte del Perú, dichos requerimientos son atendidos por las empresas limeñas. Los productos que se fabrican en la región norte, son fundiciones grises laminares de poca responsabilidad, debido principalmente a una falta de actualización tecnológica en los procesos de fabricación, lo cual los hace poco competitivos frente a la producción limeña, la cual es la mejor opción para piezas de mayor responsabilidad.

Impulsar el desarrollo de la industria manufacturera de aleaciones, no solo férreas, sino aleaciones metálicas en general, significa ayudar a las pequeñas y medianas empresas de este rubro a mejorar la calidad de sus productos gracias a la optimización de procesos dentro de sus posibilidades de inversión. Esta ayuda tiene que venir de las universidades que actúan como centros de investigación y de transferencia tecnológica, y del estado, a través de los diferentes instrumentos de apoyo que ya se están generando.

Ante este escenario, en la Universidad de Piura se está desarrollando el proyecto "Impulso de la industria manufacturera de aleaciones férreas mediante el estudio de procesos de mejoramiento de la calidad de fundiciones grises producidas en el norte del Perú, con aportes de investigadores peruanos y colombianos", dentro del cual se ha desarrollado esta tesis.

En este trabajo se busca analizar la situación actual de la actividad manufacturera en cuanto a la calidad metalúrgica de las piezas producidas para poder proponer más adelante procesos de mejora que permitan obtener productos de mayor calidad y cubrir la demanda no sólo de piezas de poca responsabilidad, sino también, de gran envergadura y, de esta manera, contribuir al impulso de estas empresas del sector ya mencionado.

Para finalizar, expreso mi agradecimiento a mi asesora Dra. Ing. Rosalba Guerrero Aslla, por la paciencia en la revisión y apoyo constante en el desarrollo de la presente tesis. De igual forma a todas las personas involucradas directa o indirectamente en el proyecto del cual forma parte esta tesis y finalmente un eterno agradecimiento a esta prestigiosa universidad por la enseñanza integra en valores preparándonos para un futuro competitivo y formándonos como personas de bien.

Resumen

El presente trabajo de investigación tiene como objetivo caracterizar y evaluar la calidad de muestras de fundición gris laminar, fabricadas en talleres de fundición de cuatro ciudades del norte del Perú; así como también, la materia prima empleada, y su impacto en la calidad final de las muestras.

Se visitaron diez talleres de fundición no sólo para obtener muestras del material que ellos fabrican, sino también, para tener conocimiento de su infraestructura, cómo realizan sus procesos y qué problemas presentan en la producción de sus piezas.

Los resultados obtenidos evidencian que las muestras de los talleres, en general, no cumplen con las normas que caracterizan a las fundiciones grises desde el punto de vista químico, mecánico y metalográfico, lo cual es debido a una inadecuada selección de chatarra y proporción de cargas, y a una utilización de carbones de elevado contenido de azufre, todo lo cual se ve reflejado en los defectos encontrados. Se logró catalogar un número significativo de chatarras, que permitirá una mejor selección de las mismas, se hace también sugerencias de cargas para el horno cubilote con el fin de obtener fundiciones estándar desde el punto de vista químico.

Intro	ducción		1
Capí	tulo 1 Fur	diciones grises	3
1.1.	Fundici	ones férreas	3
1.2.	Clasific	ación de las fundiciones férreas	3
1.3.	Fundici	ón gris	4
	1.3.1.	Introducción	4
	1.3.2.	Clasificación de las fundiciones grises	4
1.4.	Formas	de grafito	5
1.5.	Solidifi	cación de las fundiciones grises	7
	1.5.1.	Diagrama hierro-carbono	7
	1.5.2.	Solidificación y enfriamiento de las fundiciones según el diagrama estable	9
	1.5.3.	Microestructura de una fundición gris	10
	1.5.4.	Estructuras del constituyente matriz de una fundición gris para distintos enfriamientos en estado sólido	11
1.6.	Defecto	s internos más comunes en las piezas de fundiciones grises	12
1.7.	Propieda aleadas	des generales de las fundiciones grises de grafito laminar no	15
Capí	tulo 2 Infl	uencia de los elementos de aleación de las fundiciones grises	19
2.1.	Influenc	cia de un tercer elemento sobre la temperatura de equilibrio	19
2.2.	Influence	cia de los principales elementos presentes en las fundiciones	20
	2.2.1.	Azufre	20
	2.2.2.	Manganeso	21
	2.2.3.	Fósforo	23
	2.2.4.	Carbono	25
		2.2.4.1. Carbono equivalente	26
	2.2.5.	Silicio	26
2.3.	Efectos	de los elementos de aleación en las fundiciones	28

Índice

Capítu	ulo 3 Cha	tarra de fundición y carbón de piedra	. 31					
3.1.	El horno	de cubilote	. 31					
3.2.	Zonas de	Zonas del cubilote						
3.2.1.	Zona de	precalentamiento	. 33					
3.2.2.	Zona de	fusión	. 33					
3.2.3.	Zona de	oxidación	. 33					
3.2.4.	Zona de	reducción	. 34					
	3.2.5.	Zona de crisol	. 34					
3.3.	Combus	tibles para el cubilote	. 35					
	3.3.1.	Combustibles sólidos	. 35					
	3.3.2.	Composición de los combustibles sólidos	. 35					
		3.3.2.1. Materiales volátiles	. 36					
		3.3.2.2. Ceniza	. 36					
		3.3.2.3. Contenido de humedad	. 36					
		3.3.2.4. Carbono fijo	. 36					
		3.3.2.5. El contenido de azufre	. 36					
	3.3.3.	Carbón natural	. 37					
		3.3.3.1. Carbón de piedra	. 38					
		3.3.3.2. Antracita	. 38					
		3.3.3.3. Leña	. 39					
		3.3.3.4. Carbón de leña	. 39					
		3.3.3.5. Hulla	. 39					
	3.3.4.	El coque	. 39					
	3.3.5.	Fundentes	. 41					
3.4.	Materias	primas para el horno cubilote	. 43					
	3.4.1.	Materiales de alto carbono	. 43					
	3.4.2.	Materiales de medio carbono	. 43					
	3.4.2.1.	Chatarra de fundición	. 43					
	3.4.3.	Materiales de bajo carbono	. 44					
		3.4.3.1. Chatarra de acero	. 44					
	3.4.4.	Ferroaleaciones	. 46					
3.5.	Cambios	s en la composición durante la fusión	. 47					
	3.5.1.	Carbono	. 47					
	3.5.2.	Silicio	. 48					
	3.5.3.	Manganeso	. 48					
	3.5.4.	Azufre	. 48					
	3.5.5.	Fósforo	. 48					
3.6.	Compos	ición química de las piezas de fundición gris	. 49					
3.7.	Cargas t	ípicas del horno cubilote	. 50					
3.8.	Cálculo	Cálculo de la carga del cubilote						

3.9.	Carga d	e menor costo	54
Capít	ulo 4 Cai	racterización de las muestras y la materia prima de diez talleres de	
fundi	ción parti	cipantes	55
4.1.	Talleres	de fundición participantes	55
4.2.	Barras p	para caracterizar fundiciones grises	55
4.3.	Procedi	miento pre-análisis	56
4.4.	Muestra	s entregadas por cada taller	57
	4.4.1.	Taller 1	58
	4.4.2.	Taller 2	58
	4.4.3.	Taller 3	59
	4.4.4.	Taller 4	59
	4.4.5.	Taller 5	60
	4.4.6.	Taller 6	61
	4.4.7.	Taller 7	62
	4.4.8.	Taller 8	62
	4.4.9.	Taller 9	63
	4.4.10.	Taller 10	64
4.5.	Análisis	s realizados	65
	4.5.1.	Análisis químico	65
	4.5.2.	Análisis metalográfico	65
		4.5.2.1. Técnica metalográfica para las fundiciones	65
		4.5.2.2. Determinación de la fracción volumétrica de la esteadita .	67
	4.5.3.	Caracterización mecánica	71
		4.5.3.1. Ensayo de tracción	72
		4.5.3.2. Ensayo de Dureza Brinell	74
4.6.	Caracter	rización de la materia prima	75
	4.6.1.	Chatarra	75
	4.6.2.	Combustible empleado	75
Capít	ulo 5 Res	ultados y discusión de resultados	77
51	Resulta	dos y discusión de las muestras de los diez talleres participantes	77
	5.1.1.	Análisis químico.	77
	5.1.2.	Análisis metalográfico	83
		5 1 2 1 Análisis de grafito	83
		5122 Análisis de la matriz	87
		5123 Análisis de defectos	93
	513	Caracterización mecánica	95 97
	514	Discusión del cumplimiento de estándares	ر د ۵۵
52	Resulta	dos y discusión de la chatarra	101
5.4.	5 2 1	Análisis químico	102
	J.2.1.	- munors quintee	102

	5.2.2.	Análisis metalográfico	. 103
	5.2.3.	Determinación de dureza	. 107
5.3.	Caracter	ización del carbón	. 107
5.4.	Relaciór	entre la materia prima y la calidad de las piezas analizadas	. 109
	5.4.1.	Sugerencias de cargas para obtener fundiciones estándar desde el punto de vista químico	110
Concl	usiones		117
Biblio	grafía		121
ANEX	KOS		. 123
Anexo	A. NOR	MA UNE 36 117 – Tipos, tamaños y distribución de grafito	. 125
Anexo	B. NOR	CMA ASTM A 48 – Clasificación de las fundiciones grises según	1.00
su resi	istencia a	la tracción	128
Anexo	OC. Micro	ografías de las muestras de los talleres	. 131
Anexo	D. Micr	ografía de las chatarras analizadas	. 298
Anexo	E. Micro	ografía de las chatarras analizadas	331

Índice de Tablas

Tabla 1.	Composición de las fundiciones grises	4
Tabla 2.	Clasificación de las fundiciones grises según la norma ASTM A48	5
Tabla 3.	Influencia de los elementos de aleación en los constituyentes microscópicos de las fundiciones.	28
Tabla 4.	Influencia de los elementos en la situación de los puntos críticos del diagrama hierro-carbono	29
Tabla 5.	Clasificación de combustibles sólidos	35
Tabla 6.	Clasificación ASTM de carbones por rango	37
Tabla 7.	Resumen carbones para fundición	40
Tabla 8.	Composición de la escoria en horno cubilote	42
Tabla 9.	Materiales de alto carbono	43
Tabla 10.	Composición química de algunas chatarras de fundición	44
Tabla 11.	Composición química de algunas chatarras de acero frecuentemente utilizadas como carga.	45
Tabla 12.	Clasificación de la chatarra	45
Tabla 13.	Cambios aproximados en la composición durante la operación del horno cubilote	47
Tabla 14.	Composiciones base típicas de piezas fundidas de hierro gris	49
Tabla 15.	Equivalencia de normas para la clasificación de fundiciones grises	49
Tabla 16.	Cargas típicas del horno cubilote	50
Tabla 17.	Cálculo de la carga para silicio	50
Tabla 18.	Hoja de cálculo de carga para fundición de clase 35	51
Tabla 19.	Pesos individuales para la hoja de cálculo de carga para una clase 35	52
Tabla 20.	Hoja de cálculo de carga para fundición de clase 35 sin arrabio	53
Tabla 21.	Pesos individuales para la hoja de cálculo de carga para una clase 35	53
Tabla 22.	Talleres participantes	55
Tabla 23.	Todas las muestras entregadas por los talleres participantes	57
Tabla 24.	Chatarra empleada en los talleres de fundición	75
Tabla 25.	Chatarra empleada en los talleres de fundición	75
Tabla 26.	Composición química de las muestras entregadas	78

Tabla 27.	Porcentajes del carbono equivalente, carbono y silicio, ordenados de menor a mayor	80
Tabla 28.	Porcentajes de azufre, manganeso y fósforo ordenados de menor a mayor	81
Tabla 29.	Análisis del azufre y manganeso de las muestras de los talleres participantes	82
Tabla 30.	Estandarización química de las muestras de los talleres participantes	83
Tabla 31.	Distribución y tamaño de grafito de las muestras	84
Tabla 32.	Tipos de perlita	87
Tabla 33.	Matriz de las muestras	89
Tabla 34.	Esteadita de las muestras	91
Tabla 35.	Defectos de las muestras	95
Tabla 36.	Resistencia a la tracción de las muestras	98
Tabla 37.	Ensayo de dureza de las muestras	99
Tabla 38.	Resumen de los criterios más importantes para la evaluación de la calidad de las muestras analizadas	. 100
Tabla 39.	Evaluación de la calidad de las muestras en porcentajes	. 101
Tabla 40.	Composición química de las chatarras analizadas	. 102
Tabla 41.	Resumen de los criterios más importantes para la evaluación de las chatarras	. 103
Tabla 42.	Evaluación de la calidad de las muestras en porcentajes	. 103
Tabla 43.	Análisis metalográfico de las chatarras analizadas	. 104
Tabla 44.	Esteadita en la chatarra	. 106
Tabla 45.	Resumen de las medidas de dureza realizadas a cada muestra	. 107
Tabla 46.	Análisis químico y propiedades de combustión de muestras de los talleres 2 y 8	. 108
Tabla 47.	Análisis químico y propiedades de combustión de muestras de los talleres 2 y 8	. 108
Tabla 48.	Cargas típicas del horno cubilote	. 111
Tabla 49.	Comparación del arrabio con una chatarra analizada de similar composición	. 111
Tabla 50.	Comparación de la chatarra de fundición baja en fósforo de similar con una chatarra analizada de composición similar	. 111
Tabla 51.	Comparación de chatarra de acero con chatarra de resorte de similar composición	. 112
Tabla 52.	Composiciones base típicas de piezas fundidas de hierro gris	. 112
Tabla 53.	Hoja de cálculo de carga para fundición de clase 25 sin arrabio	. 113
Tabla 54.	Pesos individuales para la hoja de cálculo de carga para fundición de clase 25	. 113
Tabla 55.	Hoja de cálculo de carga para fundición de clase 35 sin arrabio	. 114
Tabla 56.	Pesos individuales para la hoja de cálculo de carga para fundición de clase 35	. 114

Tabla 57.	Posible aumento de azufre debido al carbón	115
Tabla 58.	Hoja de cálculo de carga para el azufre de la muestra M8	116

Índice de Figuras

Figura 1.	Dibujo esquemático de cuatro fundiciones con diferentes tipos de grafito. (a) Fundición gris, (b) fundición maleable, (c) fundición dúctil y (d) fundición vermicular	6
Figura 2.	(a) Secuencia de solidificación de la célula eutéctica de grafito. (b) Fotografía electrónica de barrido del eutéctico.	6
Figura 3.	Esquemas de las cinco clases de grafito laminar	7
Figura 4.	Diagrama Fe-C metaestable (líneas continuas) y diagrama Fe-C estable (líneas discontinuas)	8
Figura 5.	Esquema que muestra las curvas de enfriamiento A1, A2, A3 de la solidificación estable de las fundiciones.	9
Figura 6.	Modalidades de enfriamiento de una fundición gris ya solidificada. Compromiso entre enfriamiento estable y metaestable	12
Figura 7.	Defecto tipo sopladura	13
Figura 8.	Defecto de contracción	14
Figura 9.	Inclusión de escoria	15
Figura 10.	Comparación de las capacidades relativas de amortiguamiento vibracional de (a) acero y (b) fundición gris.	18
Figura 11.	Influencia sobre la temperatura del eutéctico estable y metaestable. a) Fuerte grafitizante; b) Débil grafitizante; c) Fuerte estabilizante del carburo; d) Débil estabilizante del carburo	19
Figura 12.	Diagrama Fe-S	20
Figura 13.	Sulfuro de manganeso (gris oscuro, redondeado) e inclusiones de carbonitruro de titanio (gris claro, angular). Ataque con 2% de nital. 500x	20
Figura 14.	Efecto del azufre en la cantidad de células eutécticas y la profundidad de cementación para fundiciones grises inoculadas y no inoculadas	21
Figura 15.	Diagrama Mn-S.	22
Figura 16.	Sección vertical a través del diagrama de fase ternario en porcentaje en peso de manganeso 4.92% (a), 12.8%, 12.8%(b), y 19.7%(c)	23
Figura 17	Aparición de defectos de sopladura en fundiciones grises en función del contenido de azufre y manganeso. La temperatura de colada se mantuvo constante a 1280 ° C. Piezas fundidas defectuosas tenían sopladuras asociadas con inclusiones de sulfuro de manganeso	23

Figura 18.	Dibujo esquemático de la esteadita	24
Figura 19.	Superficies de liquidus calculadas en el diagrama de fase Fe-C-P	25
Figura 20.	Influencia del contenido de silicio sobre las líneas de solubilidad y temperaturas de equilibrio del sistema Fe-C	27
Figura 21.	Horno de Cubilote	32
Figura 22.	Localización de las zonas en el cubilote	32
Figura 23.	Barra estándar para análisis del proyecto	56
Figura 24.	Obtención de discos	57
Figura 25.	Muestras del taller 1	58
Figura 26.	Muestra del taller 2	58
Figura 27.	Probeta de tracción con defectos	59
Figura 28.	Muestra del taller 3	59
Figura 29.	Muestras del taller 4	60
Figura 30.	Muestras del taller 5	60
Figura 31.	Muestras del taller 6	61
Figura 32.	Muestras del taller 6	61
Figura 33.	Muestra del taller 7	62
Figura 34.	Muestras del taller 8	62
Figura 35.	Muestras del taller 9	63
Figura 36.	Probeta de tracción con defectos	64
Figura 37.	Muestra del taller 10	64
Figura 38.	Sección de probeta a analizar para la caracterización metalográfica para las muestras tipo barra cilíndrica	66
Figura 39.	Probetas para el análisis metalográfico, obtenidas de las barras y piezas entregadas por los talleres	66
Figura 40.	Zonas para caracterización metalográfica para probetas con sección tipo fracción circular	67
Figura 41.	Imagen a analizar	68
Figura 42.	Interfaz del programa Image J	69
Figura 43.	Análisis de la esteadita en el programa Image J	70
Figura 44.	Resultados de las áreas medidas	70
Figura 45,	Medidas de la probeta de tracción	72
Figura 46.	Probetas de tracción una vez ensayadas	73
Figura 47.	Probeta siendo traccionada	74
Figura 48.	Chatarras conseguidas	76
Figura 49.	Micrografía 1 - Zona central de la muestra M2. Estado de pulido (no atacado). Presenta láminas de grafito tipo A, con tamaño N° 3. 200X	85
Figura 50.	Micrografía 2 - Zona central de la muestra M6 en estado de pulido (no atacado). Presenta láminas de grafito tipo B con tamaño N° 4 y N°5.	
	200X	86

Figura 51.	Micrografía 3 - Zona central de la muestra M20. Estado de pulido (no atacado). Presenta láminas de grafito tipo A y tipo E, con tamaño N°2	
	y N°3. 200X	86
Figura 52.	Esquema de la curva de transformación de austenita a perlita	87
Figura 53.	Esquema de dos zonas de una misma pieza donde se produce perlita fina y gruesa.	88
Figura 54.	Micrografía 4 - Zona central de la muestra M3 con matriz perlítica (zonas oscuras), predominantemente tiene perlita fina, con áreas de esteadita. Atacada con 3% nital. 548.33X. Fuente: Elaboración propia	92
Figura 55.	Micrografía 5 Zona intermedia de la muestra M9. Matriz perlítica (mayoritariamente perlita gruesa) rodeado por zonas ferritizadas con muy poca esteadita. Atacada con 3% nital. 548.33X Fuente: Elaboración propia	92
Figura 56.	Zona intermedia de la muestra M30. Matriz perlítica con grandes zonas de esteadita. Atacada con 3% nital. 548.33X Fuente: Elaboración propia	93
Figura 57.	Micrografía 6 - Inclusiones de sulfuros de manganeso (áreas grises oscuras, redondeado) en toda la muestra M1. Estado de pulido (no atacado). 500X. Fuente: Elaboración propia	96
Figura 58.	Micrografía 7 - Microporos del tipo cavidades de contracción, preferentemente en zona central de la muestra M1 en estado de pulido (no atacado). 137.08X	96
Figura 59.	Micrografía 8 - Hierro gris en estado de colada que contiene una inclusión de escoria en la periferia (áreas oscuras grandes) correspondiente a la muestra M1. Estado de pulido (no atacado). 137.08X.	97
Figura 60.	Micrografía 9 - Fundición gris con ledeburita, matriz perlítica con pequeñas áreas de esteadita. Atacado con 3% de nital. 548.33X	105
Figura 61.	Micrografía 10 - Matriz perlítica ferritizada con grandes zonas de esteadita de la muestra C1. Atacada con 3% nital. 548.33X. Fuente: Elaboración propia	106

Introducción

El presente trabajo de investigación tiene como objetivo caracterizar y evaluar la calidad de muestras de fundición gris laminar, fabricadas en talleres de fundición de cuatro ciudades del norte del Perú. Se ha caracterizado también la materia prima empleada, y se ha estudiado el impacto de ésta en la calidad de las muestras obtenidas, especialmente en cuanto a la composición química.

La presente tesis ha sido diseñada en cinco capítulos.

En el primer capítulo, referido a fundiciones grises, se describen las familias de fundiciones según el tipo de grafito y la matriz metálica. De la misma manera, se estudian las diferentes microestructuras que puede presentar una fundición gris y la forma cómo éstas se consiguen, se explican los defectos que puede tener y cómo éstos se producen. Además, se da una clara información de las diferentes propiedades mecánicas, características y ventajas que presenta la fundición gris.

El segundo capítulo describe la influencia de un tercer elemento en la fundición, dando a conocer como se opone o favorece a la formación de una determinada microestructura. También se analiza la influencia en las características metalúrgicas del carbono, silicio, manganeso, azufre y fósforo; los cuales son los principales elementos presentes en las fundiciones grises comunes. Además, se analiza la influencia de los elementos de aleación en los constituyentes microscópicos de las fundiciones y en la situación de los puntos críticos del diagrama hierro-carbono.

En el tercer capítulo, se hace un estudio breve del horno de cubilote, explicando lo que ocurre en cada zona del horno para entender así lo que sucede cuando éste está en marcha. Posteriormente, se hace un estudio de la materia prima que se utiliza en la fabricación de las fundiciones grises. Primero se estudian los combustibles para el cubilote y después se hace un estudio de la chatarra utilizada. Por último, se estudian las cargas típicas del horno cubilote para su posterior aplicación a nuestra realidad. Este estudio es de fundamental importancia ya que la calidad en cuanto a composición química del material no sólo depende de una adecuada selección de la materia prima, sino también de la proporción de las cargas.

El cuarto capítulo detalla las muestras de fundición presentadas por cada taller, se explica el procedimiento para estandarizar las muestras de fundición gris, y se expone la técnica empleada para su respectiva caracterización. Además, se detallan tanto las chatarras y las muestras del carbón de piedra, como las técnicas empleadas para su respectiva caracterización.

En el quinto y último capítulo se proporcionan los resultados de la caracterización química, metalográfica y propiedades mecánicas, así mismo se realiza la discusión de resultados de todo el material analizado, se analiza la influencia de la materia prima en las características de las muestras de los talleres y se hace una sugerencia de cargas para obtener fundiciones estándar desde el punto de vista químico.

Finalmente se exponen las conclusiones más importantes logradas en este trabajo.

Capítulo 1 Fundiciones grises

1.1. Fundiciones férreas

Entre las aleaciones de hierro-carbono, las fundiciones son un grupo de aleaciones de fundamental importancia para la industria, no sólo debido a las características inherentes de los materiales en sí mismos, sino también porque, mediante la introducción de elementos de aleación, aplicación de tratamientos térmicos adecuados y el desarrollo de la fundición esferoidal, ha sido viable su uso en aplicaciones que, de cierto modo, eran exclusivas de los aceros.

Las fundiciones férreas se definen como aleaciones hierro-carbono-silicio, que típicamente tienen un contenido en carbono de 2 % a 4 % y de 0.5 % a 3 % de silicio, y que durante su solidificación experimentan la reacción eutéctica (Askeland y Wright, 2013).

1.2. Clasificación de las fundiciones férreas

Son muchos los factores que hay que considerar cuando se quiere clasificar las fundiciones férreas; es por ello que, para el propósito de nuestro estudio, las clasificaremos según el modo de solidificación:

- Fundiciones Blancas: Solidifican según el diagrama hierro-carbono meta-estable. Cuando se fractura una pieza de fundición de estas características, se fractura con un aspecto blanco y cristalino.
- Fundiciones Grises: Solidifican en el diagrama hierro-carbono estable. Aparece grafito, cuyo color es gris, por lo cual al romperse la fractura tendrá este color. Las fundiciones grises para nuestro estudio las dividiremos en las dos familias más importantes, según la forma de grafito, pueden ser laminares (el grafito aparece como lámina) o pueden ser esferoidales (el grafito aparece como esfera).
- Fundiciones Maleables: La fundición maleable es una fundición que solidifica como blanca y luego es tratada térmicamente, y según el tratamiento tendremos la fundición maleable americana o la fundición maleable europea.

Cabe recalcar que, una vez acabada la solidificación, el posterior enfriamiento, puede ser un enfriamiento que siga el diagrama estable o el meta-estable.

1.3. Fundición gris

1.3.1. Introducción

Dentro de las fundiciones férreas, la fundición gris es la aleación más usada debido a las siguientes características:

- Fácil fusión y moldeo
- Buena resistencia mecánica
- Excelente maquinabilidad
- Buena resistencia al desgaste
- Buena capacidad de amortiguamiento

Como en todas las aleaciones metálicas, hay una estrecha correlación entre las propiedades de las fundiciones y su microestructura, ésta correlación en el caso particular de la fundición gris, es más estrecha y compleja, debido fundamentalmente a la forma del grafito, su tamaño, cantidad y la forma en que se encuentra distribuido, y debido también a la velocidad de enfriamiento, que suele variar principalmente con el espesor de la pieza y también con la naturaleza de los moldes.

Las fundiciones grises se presentan dentro de una gama muy amplia con respecto a su composición química:

Composición en %								
С	Si	Mn	Р	S				
2.5 a 3.50	1.50 a 3.00	0.50 a 0.80	Abajo de 0.30	0.1 a 0.2				

Tabla 1. Composición de las fundiciones grises

Fuente: Rakhit, 2013

A parte de estos elementos, es frecuente adicionar otros elementos de aleación con el propósito de alterar ciertas características del material. La influencia de la composición química en las características metalúrgicas y propiedades de los elementos de aleación de las fundiciones grises se verá en el siguiente capítulo.

1.3.2. Clasificación de las fundiciones grises

Existe una amplia variedad de composiciones de fundición gris que son usadas para obtener diferentes propiedades. Como existen diversas composiciones, es difícil clasificar la fundición gris solo en base a la composición. Es por eso que la "American Society for Testing Materials" (ASTM) en cooperación con la "American Foundry's Society" (AFS) han establecido ciertas especificaciones para las fundiciones grises en base a la resistencia a la tracción, cuya norma ASTM A48, es la más utilizada para realizar la clasificación de las fundiciones grises.

En esta clasificación, que se muestra en la tabla 2, las tres primeras clases son designadas como las clases ordinarias y el resto, clases de alta resistencia.

Clase de fundición gris	20	25	30	35	40	45	50	55	60
Resistencia a la tracción (ksi)	20	25	30	35	40	45	50	55	60

Tabla 2. Clasificación de las fundiciones grises según la norma ASTM A48

Fuente: Rakhit, 2013.

Por ejemplo, para la fundición gris con resistencia a la tracción de 30 ksi se leerá ASTM A48, Clase 30.

Una segunda clasificación de las fundiciones grises se da dependiendo del proceso de enfriamiento, clasificándose de la siguiente manera:

- Fundición gris perlítica: Solidifican según el diagrama estable y cuya microestructura está formada por láminas de grafito eutéctico segregado sobre matriz perlítica.
- Fundición gris ferrítica: Su microestructura está formada por láminas grandes de grafito primario y láminas más pequeñas de grafito eutéctico segregado sobre ferrita.
- Fundición gris ferrito-perlítica: Solidifican según el diagrama estable y su microestructura está formada por láminas de grafito eutéctico segregado sobre matriz ferrito-perlítica.

1.4. Formas de grafito

El grafito de las fundiciones puede tener cuatro formas principales: grafito laminar, grafito esferoidal, grafito nodular y grafito vermicular, las cuales se pueden ver en la Figura 1.

Grafito Laminar

En las fundiciones grises laminares, el grafito comienza a crecer de un centro común y queda en contacto con la masa fundida mientras la austenita llena los espacios entre las láminas (Figura 2). Se considera como un eutéctico irregular cooperativo que crece con una interfaz no isotérmica.

Figura 1. Dibujo esquemático de cuatro fundiciones con diferentes tipos de grafito. (a) Fundición gris, (b) fundición maleable, (c) fundición dúctil y (d) fundición vermicular. Fuente: Askeland y Wright, 2013.

Figura 2. (a) Secuencia de solidificación de la célula eutéctica de grafito. (b) Fotografía electrónica de barrido del eutéctico. Fuente: Fras y Gorny, 2008.

El grafito laminar en las fundiciones grises muestra en general diferentes morfologías. Comúnmente se han clasificado como tipos A, B, C, D y E (Figura 3). La composición química y la velocidad de enfriamiento controlan la formación de diferentes clases de grafito. Pequeñas y grandes cantidades de los elementos que componen la fundición gris influyen directamente en la morfología del grafito laminar. Grafito tipo A es el resultado de una buena inoculación y una moderada velocidad de enfriamiento y por lo general se asocia con las mejores propiedades mecánicas. Grafito tipo B se puede encontrar comúnmente en fundiciones de composición casi eutéctica, y se asocia con un tamaño de célula eutéctica grande y bajo subenfriamiento, solidificando en un número limitado de núcleos. Fundiciones grises hipereutécticas que solidifican con subenfriamiento mínimo resultarán en grafito tipo C. Tipos D y E ocurren cuando el subenfriamiento es alto.

Figura 3. Esquemas de las cinco clases de grafito laminar Fuente: Norma UNE-EN ISO 945-1.

Grafito nodular

Éste grafito se forma por tratamiento térmico de la fundición blanca en condiciones especiales. En la práctica, la fundición con grafito nodular se llama fundición maleable. El esquema de la fundición con grafito nodular se muestra en la figura 1.b.

Grafito esferoidal

La fundición esferoidal o dúctil contiene partículas esferoidales de grafito, a causa de la adición de una pequeña cantidad de magnesio o de cerio. El esquema de la fundición esferoidal se muestra en la figura 1.c.

Grafito vermicular

La fundición de grafito vermicular tiene grafito redondo, pero interconectado, producido durante la solidificación. El esquema de la fundición de grafito vermicular se muestra en la figura 1.d.

1.5. Solidificación de las fundiciones grises

1.5.1. Diagrama hierro-carbono

En la figura 4 se ilustran los dos tipos de diagramas existentes:

- Diagrama hierro-carbono metaestable o diagrama hierro-cementita (Fe-Fe₃C), representado en la figura con líneas continuas.
- Diagrama hierro-carbono estable, o diagrama hierro-grafito, representado en la figura con líneas discontinuas.

Figura 4. Diagrama Fe-C metaestable (líneas continuas) y diagrama Fe-C estable (líneas discontinuas)

Fuente: Kostorz, 2007

El diagrama hierro-cementita (Fe-Fe₃C) es de naturaleza metaestable o de pseudo-equilibrio, ya que con el tiempo puede ocurrir la descomposición de Fe₃C en hierro y carbono, este último en forma de grafito.

Haciendo una comparación de estos dos diagramas se permite concluir que:

- Las transformaciones eutécticas y eutectoides aparecen para temperaturas algo mayores en el diagrama estable.
- Los porcentajes de carbono presente en las aleaciones con composiciones eutéctica y eutectoide son algo menores que las del diagrama metaestable.
- El carbono es menos soluble en la ferrita y en la austenita del diagrama estable.

Los factores más importantes que determinan el que una aleación férrea solidifique según el diagrama estable o lo haga de acuerdo con el metaestable son dos:

• Cuanto menor sea la velocidad de enfriamiento mayor es la probabilidad de que se forme grafito.

• La presencia de otros elementos de aleación, influirán sobre la solidificación de las aleaciones hierro-carbono.

1.5.2. Solidificación y enfriamiento de las fundiciones según el diagrama estable

A continuación, explicaremos las transformaciones que ocurren en los procesos de solidificación y enfriamiento de las fundiciones grises cuando ambos siguen el diagrama estable.

Figura 5. Esquema que muestra las curvas de enfriamiento A1, A2, A3 de la solidificación estable de las fundiciones.

Fuente: Bravo, 2005

Analizaremos tres aleaciones típicas, la primera corresponde una fundición gris eutéctica (A1), la segunda a una fundición gris hipoeutéctica (A2) y la tercera a una fundición gris hipereutéctica (A3).

En la aleación eutéctica, empezamos con líquido de 4.25%C que al alcanzar la temperatura 1154°C (punto 1) se da la reacción eutéctica estable, convirtiéndose en austenita de 2.08%C y grafito laminar en forma de rosetas, solidificando completamente en el punto 1". Seguimos enfriando, en este trayecto la austenita pierde carbono, y el carbono que sale aumenta el contenido de grafito. Este proceso sigue hasta que llegamos a la temperatura de 738°C (punto 2), dándose la reacción eutectoide, a esta temperatura la austenita de 0.68%C va transformarse en ferrita más grafito (punto 2"). El enfriamiento sigue hasta la temperatura ambiente, dando una matriz ferrita con grafito embebido en dicha matriz. En la aleación hipoeutéctica, empezamos con líquido con porcentaje en carbono, menor a 4.25%C. El líquido se enfría hasta que llega al punto 3, solidificando dando dendritas de austenita rodeadas por el líquido hasta el punto 4, donde se produce la reacción eutéctica estable, y todo lo que es líquido se convierte en eutéctica estable (punto 4"). Seguimos enfriando, en este trayecto la austenita pierde carbono, y el carbono que sale aumenta el contenido de grafito. Este proceso sigue hasta que llegamos a la temperatura de 738°C (punto 5), dándose la reacción eutectoide, a esta temperatura la austenita de 0.68%C va a transformarse en ferrita más grafito (punto 2"). El enfriamiento sigue hasta la temperatura ambiente, dando una matriz ferrita con grafito embebido en dicha matriz.

En la aleación hipereutéctica, empezamos con líquido con porcentaje en carbono, mayor a 4.25%C. El líquido se enfría hasta que llega al punto 6, solidificando dando grafito, pero apareciendo como láminas gruesas (grafito primario), rodeado por el líquido, hasta el punto 7, donde se produce la reacción eutéctica estable, en la que aparecerá austenita con grafito en forma de rosetas. Una vez terminada la reacción eutéctica (punto 7"), seguimos enfriando, en este trayecto la austenita pierde carbono, y el carbono que sale aumenta el contenido de grafito. Este proceso sigue hasta que llegamos a la temperatura de 738°C (punto 8), dándose la reacción eutectoide, a esta temperatura la austenita de 0.68%C va transformarse en ferrita más grafito (punto 8"). El enfriamiento sigue hasta la temperatura ambiente, dando una matriz ferrita, las rosetas eutécticas de grafito más el grafito más grueso (primario).

1.5.3. Microestructura de una fundición gris

Las estructuras comúnmente encontradas en una fundición gris son la ferrita, cementita y perlita. Cada una de estas fases tiene sus propiedades.

Ferrita

La ferrita alfa, o simplemente ferrita, es una solución sólida intersticial de carbono en hierro, en su estado alotrópico alfa, cuya red cristalina es cúbica centrada en el cuerpo (BCC). Posee una dureza de 90 HB, una densidad de 7.88 g/cm³ y una resistencia a la rotura de 28 kg/mm², llegando a un alargamiento del 35 al 40%. Es magnética desde la temperatura ambiente hasta 768°C, la llamada temperatura Curie, y es amagnética por encima de esa temperatura. En general la ferrita es una fase muy blanda, poco resistente, suave, dúctil, maleable y tenaz. Su formación se puede promover por medio de grafitizantes, tales como el silicio, y por una lenta velocidad de enfriamiento, tal como, aquella que predomina en piezas grandes.

Cementita

La cementita es un compuesto químico de estructura cristalina ortorrómbica llamado carburo de hierro (Fe₃C) con un contenido en carbono del 6.67%. La

cementita es un compuesto metaestable, se dice que es metaestable porque con el tiempo, una vez que se ha formado, se descompone en hierro y carbono como grafito después de muchos años. Presenta una dureza de 68 HRC, por ser extremadamente dura tiene una alta resistencia al desgaste, pero es indeformable y frágil, eso condiciona las aplicaciones. Es magnética por debajo de 210°C y no magnética a temperaturas superiores a 210°C. Su formación es favorecida en áreas del fundido donde tiene lugar una rápida velocidad de enfriamiento, tales como: esquinas, en toda la superficie de la pieza y en secciones delgadas. Los hierros con bajo carbono equivalente, particularmente aquellos con bajo contenido de silicio, son propensos a contener cementita.

Perlita

Es una mezcla eutectoide bifásica, tiene propiedades que dependen de ambas fases (ferrita y cementita). Tiene una dureza de aproximadamente 250 HB, resistencia a la tracción aproximadamente 80 kg/mm². Es una mezcla interlaminar, donde el parámetro que influye en sus propiedades es el espaciado interlaminar, que es la distancia que hay entre láminas de ferrita y cementita. Cuanto menor es el espaciado, mayores son las propiedades mecánicas. Es una fase muy dura, poco tenaz, poco deformable, se requiere para aplicaciones donde se requiera mucha resistencia, pero no mucha tenacidad.

1.5.4. Estructuras del constituyente matriz de una fundición gris para distintos enfriamientos en estado sólido

El compromiso entre las transformaciones estables y metaestables en estado sólido se pueden explicar siguiendo la figura 6. En ella, por simplicidad, se admite que la temperatura de transformación eutectoide estable es constante e igual a la temperatura eutectoide metaestable.

En el apartado 1.5.2 se explicó que en el intervalo entre la temperatura eutéctica (una vez acabada la reacción eutéctica estable) y la temperatura eutectoide de las aleaciones analizadas, la austenita pierde carbono, el cual hace que aumente del contenido de grafito. En realidad, además de esta transformación ocurre un proceso de ferritización directa en las zonas contiguas al grafito de solidificación que se puede apreciar en la figura 1.6. Éste proceso se debe a que algunos átomos de carbono de la austenita emigran por difusión y se depositan sobre aquel grafito (sobre todo si se trata de los tipos B o D), con lo cual la austenita se empobrece en carbono y se transforma localmente en ferrita.

Como la solidificación y enfriamiento de las aleaciones citadas en el apartado 1.5.2 siguen el diagrama estable, todas tienen a temperatura ambiente una matriz ferrítica con grafito embebido en dicha matriz. Adicionalmente a dichas condiciones se pueden presentar otros casos que modifican la matriz. Uno de ellos ocurre cuando en el enfriamiento, la transformación eutectoide de toda la masa de austenita se produce de acuerdo con el diagrama metaestable, en tal caso, a temperatura ambiente la matriz resultante será ferrito-perlítica con grafito como constituyente disperso. Cabe recalcar que las áreas de ferritización directa que

aparecen en este caso no son deseables, entre otras cosas, por su desfavorable comportamiento al desgaste.

Otro caso se da cuando, en el intervalo entre la temperatura eutéctica (una vez acabada la reacción eutéctica estable) y la temperatura eutectoide de una fundición gris, el enfriamiento es suficientemente rápido (metaestable) como para impedir la ferritización directa de la matriz austenítica en dicho intervalo, como se aprecia en la figura 6. En este caso la pérdida de solubilidad del carbono en la austenita no produce grafito sino cementita proeutectoide. Si, además, el enfriamiento sigue siendo "metaestable" hasta la temperatura ambiente, se tendrá una fundición gris de matriz perlítica.

1.6. Defectos internos más comunes en las piezas de fundiciones grises

Para el estudio realizado sólo analizaremos los defectos internos más comunes que ocurren en las piezas de fundiciones grises A continuación se estudian dichos defectos.

Porosidades y sopladuras

Las porosidades, los agujeros pequeños, las burbujas y las sopladuras tienen aspecto análogo. Se trata de burbujas esféricas o aplanadas (vesículas) de superficie lisa, provocadas por gases disueltos en el metal que escapan en el acto de la solidificación, o de gases o vapores que se forman en el molde, o al contacto de éste con el metal, y que, a causa de la escasa permeabilidad del molde, tratan de encontrar un paso a través del metal líquido, donde quedan aprisionadas en el acto de la solidificación (Serrano, 2011).

El metal frío, resultante de una temperatura de vaciado baja, es la causa principal de las porosidades. Esto explica por qué el fundido último, vaciado de una cuchara, es el que más posibilidades tiene de resultar defectuoso. La combinación de excesivos niveles de azufre y manganeso producen también piezas con defectos de este tipo. Por tanto, para evitar este tipo de defectos se deben evitar altos contenidos de azufre y de manganeso, y, asimismo, bajas temperaturas de vaciado. La formación de las porosidades se debe a que cuando la temperatura del metal fundido cae, se forman sulfuros de manganeso y se separan del metal fundido. Estos flotan sobre la superficie donde se mezclan con la escoria de la cuchara (silicatos de hierro y de manganeso), creando una escoria de muy alta fluidez. Esta escoria entra en las cavidades del molde, reacciona con el grafito precipitado durante la reacción eutéctica, y resulta en la evolución de monóxido de carbono y la formación de las porosidades. Temperaturas apropiadas del metal, niveles balanceados de azufre y manganeso, cucharas limpias, y una buena práctica de quitar la capa de escoria de la superficie minimizan estas porosidades (Bravo, 2005).

Las sopladuras son a menudo provocadas por los machos rodeados por gran cantidad de metal, y por eso, aunque permeables, con escasa posibilidad de digerir todos los gases. En la figura 7 se ilustra una sopladura de monóxido de carbono.

Figura 7. Defecto tipo sopladura Fuente: Ecob, Hartung y Olsen, 2004

Los recursos para evitar estos defectos son diversos, por cuanto son muchas las causas que los pueden provocar, como (Serrano, 2011):

- Crear en el molde y en el macho canales para el escape de los gases y cargadores bien dimensionados y repartidos.
- Emplear arena de buena calidad, bien preparada, permeable y bien seca (en el molde en seco) o bien cocida (para los machos).
- Emplear aglomerantes adecuados, no alterables, no higroscópicos, y en cantidad adecuada.
- Proteger los gases de los machos de modo que no sean obturados por el metal en el acto de la colada.
- Efectuar la colada con filtro.
- Vigilar la conducta del horno, para evitar la oxidación del metal, y colar a temperatura conveniente.
- Evitar el exceso de negro y negros de baja calidad. Este es un aditivo a base de grafito que se deposita en la superficie del molde, con el fin de impedir el contacto
entre el metal y la arena a través de la formación de una capa aislante entre la arena del molde y el metal líquido.

- Evitar la humedad en la solera del cubilote, en la piquera y en los calderos a fundir.
 - Evitar coquillas, soportes, alambres finos, húmedos u oxidados. Las partes que hayan de ser inspeccionadas (soportes) deben estar cuidadosamente recocidas y estañadas.

Rechupes y contracciones

Los rechupes y contracciones son cavidades con paredes recortadas por la presencia de dendritas formadas durante la solidificación. En la figura 8 se ilustra un ejemplo de contracción. A la suma de la contracción líquida y de la contracción por solidificación, se le denomina rechupe. Cuanta más alta sea la temperatura en el momento de colar, más acentuada será la diferencia entre el volumen específico del líquido y el del sólido y, por tanto, mayor será el rechupe. El rechupe así definido comprende tanto la contracción macroscópica, o macrorrechupe, como la contracción microscópica o microrrechupe.

Frecuentemente aparece en los espacios interdendríticos rellenos por líquido no conectado con el resto del metal líquido, cuando los dendritos están muy desarrollados. Al solidificar - y contraerse, por tanto - estas pequeñas porciones líquidas, no conectadas, forman porosidades internas: esto es el microrrechupe. (Bravo, 2005)

Los rechupes pueden depender de un diseño inadecuado de la pieza, de una concepción equivocada del dispositivo de colada cuando los bebederos y cargadores están mal dispuestos o son demasiado pequeños o están mal unidos a la pieza, etc. También la composición del metal es una de las causas más frecuentes de rechupes. Si los espesores son muy diversos en la misma pieza, es preciso alimentar con mucho cuidado las piezas, de modo que el enfriamiento comience en la zona más alejada de los cargadores y más abajo, aproximándose progresivamente a éstos. Temperaturas excesivas de vaciado pueden también incrementar la contracción del metal cuando se enfría a temperaturas de solidificación que favorecen la formación de cavidades de contracción. Además, debido a que moldes de arena verde no son dimensionalmente estables bajo el calor, las temperaturas más altas incrementan los cambios del movimiento de las paredes del molde. Existe un compromiso entre temperaturas de vaciado muy altas y muy bajas. Si la temperatura de vaciado usada es muy baja se pueden producir porosidades. Por tanto, la experiencia es el mejor camino para determinar la temperatura óptima de vaciado. (Serrano, 2011).

Figura 8. Defecto de contracción Fuente: Ecob, Hartung y Olsen, 2004

Inclusiones de escoria

Las inclusiones de escoria se producen cuando la escoria es arrastrada por el metal durante la colada, y permanecen aprisionada en el mismo metal seguidamente a la solidificación de la pieza. Las posibles causas son la eliminación inadecuada de escoria y acumulación en la cuchara, y un exceso de turbulencia en el vertido. En la figura 9 se ilustra una inclusión de escoria.

Figura 9. Inclusión de escoria Fuente: Ecob, Hartung y Olsen, 2004

1.7. Propiedades generales de las fundiciones grises de grafito laminar no aleadas

Las principales propiedades de interés de las piezas de fundición gris laminar son (Pero-Sanz, 1994):

Temperatura de fusión

Las fundiciones requieren para su elaboración menos energía que los aceros, porque con similar capacidad calorífica su temperatura de fusión es menor.

Maquinabilidad

En general, las fundiciones grises resultan fácilmente mecanizables, aunque ocasionalmente, pueden presentar dificultades de mecanizado derivadas de defectos externos tales como arena adherida a superficie, o bien por factores ligados al diseño o a la práctica del moldeo.

En el buen comportamiento de las fundiciones grises frente al mecanizado influye notablemente el grafito. Por un lado, actúa como rompedor de la viruta, debido a la discontinuidad que confiere al constituyente matriz. Por otra parte, el grafito efectúa una cierta lubricación de la herramienta. En definitiva, la maquinabilidad de las fundiciones grises es superior a la de los aceros de igual dureza.

Rechupe

Las fundiciones grises dan poco rechupe, 1 % de contracción lineal aproximadamente, inferior al de los aceros y fundiciones blancas. La pequeña contracción al solidificar se debe a que su densidad (entre 6.95 y 7.35 g/cm³, menor cuanto más carbono) es inferior a la de las fundiciones blancas (7.7 g/cm³) y a la de los aceros (densidad del hierro 7.97 g/cm³), esta menor densidad de las fundiciones grises se justifica por la presencia del grafito cuya densidad es 2.2 g/cm³. En las fundiciones grises el grafito suele ocupar un volumen (o un área de los campos observados al microscopio) entre 6 y 10 % del volumen total.

Conductividad térmica

La conductividad térmica de las fundiciones grises es aproximadamente 46 $W/(m \cdot K)$; superior a la de los aceros. En ello influye el grafito, buen conductor. La capacidad para disipar calor es, por tanto, mayor en las fundiciones grises (mayor cuanta más cantidad de grafito, y mejor si el grafito es laminar que esferoidal) que en los aceros. Para aprovechar esta propiedad, las lingoteras para acero líquido se fabrican de fundición gris hipereutéctica.

Choque térmico

La resistencia de las fundiciones grises al choque térmico resulta, también, mejor para contenidos altos en carbono.

Coeficiente de dilatación

El coeficiente de dilatación de las fundiciones grises es, aproximadamente, de 13 μ m/m entre 0 °C y 500 °C, y de 10.5 μ m/m en el rango de 0 °C y 100 °C. Aunque parecido al del hierro, resulta algo menor que este (11 μ m/m para el Fe alfa y 18 μ m/m para el Fe gamma).

Colabilidad

La colabilidad de la fundición gris es mejor cuanto mayor sea el contenido de carbono, por ser pequeño el intervalo de temperaturas entre líquidus y sólidus. Algunas de ellas, las de composición eutéctica, solidifican a temperatura constante. Gracias a la buena colabilidad de las fundiciones grises es posible moldear piezas de paredes delgadas, tales como tubos con aletas para radiadores, rodetes para bombas, anillos para columnas, calderas, compresores, etc.

El fósforo en pequeños contenidos suele también adicionarse para mejorar la colabilidad, por un doble efecto: aumento del carbono equivalente y posibilidad de formar la eutéctica ternaria de bajo punto de fusión, "esteadita"; la cual, complementariamente hará más resistente al desgaste y menos tenaz a la fundición.

Resistencia a la tracción

La resistencia a tracción, depende del tipo de grafito, de su cantidad, y de la estructura matriz. Puede señalarse, con carácter general, que la resistencia a tracción disminuye al aumentar el contenido en carbono de las fundiciones. El grafito disminuye

la sección real del constituyente matriz, que es quien aguanta el esfuerzo de tracción, y por otra parte el efecto de entalla del grafito laminar, disminuye la tenacidad.

La combinación de variaciones morfológicas, del grafito y de la perlita (en el caso de fundiciones grises perlíticas), da como resultado una menor resistencia a la tracción, para la misma fundición gris, en las secciones grandes. Recíprocamente, para una misma fundición, el valor de R será mayor en las secciones pequeñas.

Resistencia a la compresión

La resistencia a compresión de las fundiciones grises es alta: 3 ó 4 veces superior a la resistencia a la tracción. Ello se debe a que, en compresión, apenas influye el efecto de entalla del grafito y, por tanto, la contribución negativa de éste se reduce simplemente a disminuir la sección eficaz del constituyente matriz. Por otro lado, la resistencia a compresión, al igual que la resistencia a tracción, aumenta cuando aumenta la clase, y por tanto cuando disminuye el carbono equivalente.

Resistencia al desgaste

En cuanto a resistencia al desgaste el comportamiento de las fundiciones grises, es excelente. En los casos de rozamiento de metal con metal, la fundición gris da muy buenos resultados aún con mala lubricación debido a la presencia de grafito que actúa en cierto modo como lubricante, y también su estructura heterogénea es muy favorable. Su comportamiento es bueno al trabajar fundición con fundición o con otras aleaciones tan duras o más duras que ella. Debido a esas circunstancias en gran parte, la fundición gris es muy utilizada para la fabricación de piezas de máquinas herramientas.

La presencia de esteadita favorece la resistencia al desgaste. Al aumentar el porcentaje de fósforo y con ello la proporción de esteadita, disminuye el desgaste. No conviene que la esteadita se presente en forma masiva obteniéndose los mejores resultados cuando tiene forma reticular. Por medio del tratamiento térmico y con el empleo de elementos de aleación se aumenta la dureza de las fundiciones y se mejora también su resistencia al desgaste.

Amortiguamiento

Las fundiciones grises presentan la propiedad de efectividad en el amortiguamiento de la energía vibracional, que se representa y compara con la del acero en la figura 10. Las bancadas para máquina y equipos que vibran se suelen construir de fundición.

Corrosión

Las fundiciones ordinarias tienen en general una resistencia a la corrosión al agua, a los ambientes de ciudades industriales y a otros medios ligeramente corrosivos bastante superior a la de los aceros ordinarios. Los productos de corrosión quedan apresados por el esqueleto de grafito y dificultan el deterioro de zonas más profundas. Por eso, las fundiciones son muy empleadas para la fabricación de piezas de maquinaria o instalaciones que queden a la intemperie o en contacto con el agua como canalizaciones, bombas, radiadores, calderas, compresores, etc.

Figura 10. Comparación de las capacidades relativas de amortiguamiento vibracional de (a) acero y (b) fundición gris. Fuente: Callister y Rethwisch, 2013

Capítulo 2 Influencia de los elementos de aleación de las fundiciones grises

2.1. Influencia de un tercer elemento sobre la temperatura de equilibrio

En esta sección hablaremos acerca de la influencia de un tercer elemento sobre el intervalo eutéctico estable-metaestable ($T_{est} - T_{met}$). En general los elementos que incrementan el intervalo $T_{est} - T_{met}$ (temperatura eutéctica del equilibrio estable, menos la temperatura eutéctica del equilibrio metaestable), promueven la formación de grafito. Por otro lado, aquellos que disminuyen este intervalo, promueven la formación de carburos (Bravo, 2005).

Basados en su influencia específica sobre el intervalo $T_{est} - T_{met}$, el tercer elemento puede ser clasificado dentro de cuatro grupos:

- Fuertes grafitizantes que incrementan la T_{est} y disminuyen la T_{met}, tales como el silicio, aluminio, níquel y cobre. Ver figura 11.a.
- Débiles grafitizantes que decrecen la T_{est} y T_{met}, pero incrementan el intervalo Test T_{met}, tales como el fósforo y el arsénico. Ver figura 11.b.
- Fuertes estabilizantes de carburos que decrecen la Test, pero incrementan la T_{met}, tales como el cromo, vanadio y manganeso. Ver figura 11.c.
- Débiles estabilizantes de carburos que decrecen la T_{est} y T_{met} , tales como el molibdeno y tungsteno. Ver figura 11.d.

Figura 11. Influencia sobre la temperatura del eutéctico estable y metaestable. a) Fuerte grafitizante; b) Débil grafitizante; c) Fuerte estabilizante del carburo; d) Débil estabilizante del carburo

Fuente: Bravo, 2005

2.2. Influencia de los principales elementos presentes en las fundiciones

2.2.1. Azufre

El diagrama de fases Fe-S de la figura 12, muestra que el azufre forma con el hierro una eutéctica Fe – FeS más rico en FeS (sulfuro de hierro), sólido a 988°C (975°C en el sistema Fe – C – S) (Bravo, 2005). El FeS es un compuesto de bajo punto de fusión, el cual segrega en las juntas de grano generando en la fundición dureza y fragilidad, además favorece la formación de cementita y tiende, por lo tanto, a blanquear la fundición. Otros inconvenientes que supone este compuesto es que tiende a reducir la fluidez y suele causar cavidades (aire atrapado) en las piezas fundidas.

Figura 13. Sulfuro de manganeso (gris oscuro, redondeado) e inclusiones de carbonitruro de titanio (gris claro, angular). Ataque con 2% de nital. 500x Fuente: Viswanathan S. et al., 2008 Numerosos investigadores han demostrado que el azufre juega un papel significativo en la nucleación de grafito en el hierro gris. En la figura 14 se muestra el impacto de azufre en la cantidad de células y la profundidad de la tendencia al blanqueo para fundiciones grises inoculadas como no inoculadas. Esta gráfica indica que los niveles de azufre en el hierro gris deben estar en el intervalo aproximado de 0.05 a 0.12% para un beneficio óptimo. (Viswanathan S. et al., 2008)

Un fenómeno opuesto al "blanqueo", obtención de fundición blanca en la periferia y fundición gris en el núcleo de piezas, es el llamado "temple invertido", en el cual, mientras que la periferia tiene una estructura de fundición gris, el núcleo tiene zonas de fundición blanca. La explicación reside en la segregación del azufre que, para contenidos altos y bajo porcentaje de manganeso, forma FeS de gran poder blanqueante.

Figura 14. Efecto del azufre en la cantidad de células eutécticas y la profundidad de cementación para fundiciones grises inoculadas y no inoculadas. Fuente: Viswanathan S. et al., 2008

2.2.2. Manganeso

La influencia del manganeso en las fundiciones grises, es compleja. El contenido de manganeso varía en función de la matriz deseada, típicamente, puede ser tan baja como 0.1% para hierros ferríticos y tan alta como 1.2% para hierros perlíticos, ya que el manganeso es un fuerte promotor de la perlita.

Su primer efecto es combinarse con el azufre, formando un compuesto cristalino, que es el sulfuro de manganeso (Figura 13). La relación óptima entre el manganeso y azufre para una estructura libre de sulfuro de azufre es (Viswanathan S. et al., 2008):

$$Mn \ge 1.7 MS + 0.3\%$$
 Ec. 2.1

Esta fórmula es válida para contenidos de azufre menores a 0.12%. En la figura 15 podemos apreciar el Diagrama Mn-S, donde aproximadamente a más de 1620°C se forma el sulfuro de manganeso.

Figura 15. Diagrama Mn-S. Fuente: Okamoto, 2011

Cuando el manganeso presente se halla en cantidades tales que logra neutralizar y superar todo el azufre, su efecto se manifiesta aumentando la tendencia del hierro a endurecerse, aumentando la cantidad de carbono combinado, y por ello el metal se hace más duro.

En la figura 16, se muestra la influencia del incremento del contenido de manganeso en el sistema Fe-C-Mn sobre el diagrama de equilibrio de fases T-%C.

En este diagrama se pone en evidencia que el manganeso:

- Disminuye la temperatura eutectoide
- Incrementa el intervalo eutectoide, esto es el rango de temperaturas y el contenido de carbono. En consecuencia, el carbono puede coexistir en las fases α, γ y carburos.
- Decrece el contenido de carbono eutéctico y del eutectoide.
- Incrementa la temperatura del eutéctico (cerca de 3°C por cada 1%Mn)

Figura 16. Sección vertical a través del diagrama de fase ternario en porcentaje en peso de manganeso 4.92% (a), 12.8%, 12.8%(b), y 19.7%(c)
Fuente: Viswanathan S. et al., 2008

El metal frío resultante de las bajas temperaturas de vertido es la causa principal de las sopladuras. Esto explica por qué las piezas de fundición que fueron las últimas en que se realizó el vertido de la cuchara son más probables a tener un mal estado. Niveles excesivos de azufre y manganeso, sin embargo, agravan el problema. La Figura 17 muestra los niveles de azufre y manganeso en los que se producen fundiciones de buen estado y fundiciones con defectos. Cuantos más altos sean los niveles de azufre y manganeso, mayor deberá ser la temperatura de vertido para evitar las sopladuras.

 Figura 17 Aparición de defectos de sopladura en fundiciones grises en función del contenido de azufre y manganeso. La temperatura de colada se mantuvo constante a 1280 ° C.
 Piezas fundidas defectuosas tenían sopladuras asociadas con inclusiones de sulfuro de manganeso.

Fuente: Viswanathan S. et al., 2008

2.2.3. Fósforo

Una fundición potencialmente gris con contenido en fósforo superior a 0.07%, finaliza su solidificación alrededor de 950°C, temperatura a la que

solidifica una eutéctica ternaria de Fe₃P (42%), Fe₃C (31%) y Fe (27%), que recibe el nombre de "esteadita". Esta fase, contiene alrededor de 10% de fósforo; por lo cual, una fundición con 0.50% de fósforo, tendrá 5% en volumen de esteadita.

Figura 18. Dibujo esquemático de la esteadita Fuente: Udroiu y Agrifogli, 2014

Con ayuda del microscopio, es fácil descubrir la presencia del eutéctico esteadita que aparece siempre en las juntas de grano, ya que permanece en estado líquido en esas zonas, hasta una temperatura alrededor de 950°C, cuando ya los demás constituyentes de la fundición han solidificado.

El fosfuro de hierro que forma parte de la steadita tiene una dureza muy elevada, 563 a 655 HB, y la esteadita suele tener de 285 a 332 HB. En las fundiciones grises se observa que casi siempre en las proximidades de la esteadita la dureza suele ser un poco más elevada que en las demás zonas. La esteadita al ser un compuesto duro y frágil, desde el punto de vista mecánico es indeseable; sin embargo, tiene un efecto favorable sobre la fluidez de las fundiciones de modo que, en ciertos casos particulares, se puede elevar su contenido hasta el 1.5% a fin de facilitar el llenado de moldes con geometría complicada.

Para contenidos elevados en fósforo (nunca mayores de 1.8%) se producen cantidades importantes de esa eutéctica ternaria de bajo punto de fusión y se mejora con ello notablemente la colabilidad del fundido. La esteadita incrementa la resistencia al desgaste de la fundición gris; pero, a cambio, disminuye su tenacidad.

En el sistema ternario Fe-C-P rico en carbono, ya sea la cementita o el grafito la fase de equilibrio del carbono, la formación de carburo eutéctico (esteadita), no puede evitarse, debido a que el coeficiente de reparto del fósforo en el hierro entre los estados líquido y sólido es bajo, el fósforo segrega dentro del líquido durante la solidificación, y una parte del fundido llega a sobresaturarse en fósforo, que posteriormente da lugar a la formación de fosfuro de hierro (Fe₃P).

Las fases posibles de solidificar en el sistema estable y metaestable son cuatro: la austenita (γ), el fosfuro de hierro (Fe₃P), la cementita (Fe₃C) y el grafito. En la figura 19 se muestran las superficies del líquidus de las cuatro fases y las líneas del eutéctico formadas por sus intersecciones que no es más que una superposición de los diagramas ternarios austenita γ -Fe₃P-Fe₃C y γ -Fe₃P-grafito. En la figura 19 se muestran los dos puntos eutécticos ternarios. A la izquierda de y_c=0.1, corresponde al paso de L $\rightarrow \gamma$ +Fe₃P+Gr a 954°C (eutéctico ternario en la solidificación estable), donde el contenido de carbono y de fósforo en el eutéctico ternario es y_c=0.099, y_p=0.123, respectivamente. Para la derecha de y_c=0.1, el L $\rightarrow \gamma$ +Fe₃P+Fe₃C a 948°C (eutéctico ternario en la solidificación metaestable), con un contenido de carbono y de fósforo de y_c= 0.106 y_p=0.123, respectivamente. Donde Y_p=X_p/(1-X_c), y Y_c=X_c/(1-X_c), X_p es la fracción en peso del fósforo y X_c es la fracción en peso del carbono. En conclusión, contenidos mayores de 0.1%P forman la esteadita tanto en la solidificación estable como metaestable, además se puede concluir que el fósforo no tiene una fuerte influencia estabilizante de la fase grafito o del carburo de hierro (Viswanathan S. et al., 2008).

Figura 19. Superficies de liquidus calculadas en el diagrama de fase Fe-C-P Fuente: Viswanathan S. et al., 2008

2.2.4. Carbono

Las fundiciones grises contienen, típicamente, de 2.5 a 4.5% de carbono total (Jiang et al, 2000). La cantidad de carbono presente en la fundición gris depende del contenido de carbono en el arrabio (si es utilizado) y la chatarra

utilizada, así como del que es absorbido por el combustible, durante el proceso de fusión. El carbono puede encontrarse como grafito, o bien, combinado en la cementita. El carbono en forma de grafito, reduce la contracción y le da al hierro propiedades de fácil labrado. La resistencia y la dureza del hierro aumentan con el porcentaje de carbono en la forma combinada. El grado de grafitización puede expresarse como:

%Carbono total (C.T) = %grafito + %carbono combinado Ec. 2.2

Para que una fundición solidifique como gris es necesario un contenido mínimo de carbono total, alrededor de 2.2%, pero este valor depende del contenido de silicio. Si la grafitización es completa, como ocurre en las fundiciones grises ferríticas, el porcentaje de carbono total será igual al porcentaje de grafito. Si no existe grafitización el porcentaje de grafito será cero. Porcentajes de carbono combinado de 0.5 a 0. 8% generalmente indican que la estructura de la matriz es principalmente perlítica.

Las fundiciones modernas de alta calidad, en las cuales el porcentaje de carbono se limita a 3%, presentan invariablemente mayores dificultades para el trabajo en el taller por ser más corta la vida del caldo, de manera que hay que emplear temperaturas mayores, no pudiéndose conservar el material liquido durante largos espacios de tiempo, y perdiendo su fluidez rápidamente.

2.2.4.1. Carbono equivalente

Es un concepto que se aplica a fundiciones, principalmente grises, para tratar de evaluar el efecto que, el porcentaje en silicio y fósforo, realizan sobre la traslación de la posición del eutéctico.

La expresión del carbono equivalente es la siguiente:

$$\% CE = \% C + \frac{\% Si + \% P}{3}$$
 Ec. 2.3

Fundiciones grises con carbono equivalente igual a 4.3% son fundiciones consideradas de composición eutéctica; cuando el carbono equivalente es de menos del 4.3% serán fundiciones hipoeutéctica, y los que tienen más de un 4.3% equivalente de carbono son llamadas fundiciones hipereutécticas. A mayor %CE, será mayor la densidad de hojuelas de grafito, y por ende el componente de la matriz disminuirá, desfavoreciendo la resistencia de la pieza; por ello podemos afirmar que las fundiciones con alta resistencia a la tracción, tienen bajo carbono equivalente.

2.2.5. Silicio

Se encuentra presente en cantidades de 1 a 3.5% en la fundición gris. Microestructuralmente, el silicio se encuentra disuelto en la ferrita. La cantidad de silicio tiene efecto sobre la solidificación, ya que favorece la solidificación de acuerdo con el sistema estable hierro-grafito. El silicio también tiene efecto sobre la transformación eutectoide. La perlita en un hierro gris con 2% de Si puede contener solamente 0.60% de carbono.

La adición de silicio a una solución binaria hierro-carbono hace decrecer la estabilidad de la cementita (Fe₃C), es decir de la solidificación metaestable, e incrementa la estabilidad de la ferrita. En el diagrama de equilibrio de la figura 20, se observa que, conforme se incrementa el contenido de silicio en el sistema Fe-C-Si, la concentración a la que se obtiene el eutéctico y el eutectoide decrecen, mientras la temperatura del eutéctico y del eutectoide se incrementa. La estabilidad de la fase grafito también se demuestra en términos del aumento de la actividad del carbono. La concentración de silicio en la composición influye en la actividad del carbono, aumentando su valor.

Figura 20. Influencia del contenido de silicio sobre las líneas de solubilidad y temperaturas de equilibrio del sistema Fe-C
 Fuente: Viswanathan S. et al., 2008

2.3. Efectos de los elementos de aleación en las fundiciones

Los elementos de aleación modifican la microestructura de las fundiciones y con ello su dureza y resistencia, estando en ocasiones estos cambios influenciados, además, por una variación de la templabilidad. Los elementos de aleación modifican también, la situación de los puntos críticos y además ejercen una acción muy importante y compleja sobre la grafitización. En la tabla 3 se señala la influencia que los diversos elementos aleados ejercen sobre la formación del grafito y de los carburos, y sobre las características de la matriz. En la tabla 4 se señala la influencia que tiene sobre los puntos críticos.

Tabla 3. Influencia de los elementos de aleación en los constituyentes microscópicos de las fundiciones.

Tullul	ciones.				
Elemento	Grafitización y coeficientes de grafitización	Efecto sobre los carburos a alta temperatura	Efecto en la estructura del grafito	Efecto en el carbono combinado de la perlita	Efecto que produce en la matriz
Carbono	Favorece	Decrece estabilidad	Engruesa	Decrece fuertemente	Ablanda y favorece la formación de ferrita
Silicio	Favorece +1	Decrece estabilidad	Engruesa	Decrece fuertemente	Ablanda y favorece la formación de ferrita
Aluminio	Favorece +0.5	Decrece estabilidad	Engruesa	Decrece fuertemente	Ablanda y favorece la formación de ferrita
Titanio	Favorece +0.4	Decrece estabilidad	Afina fuertemente	Decrece	Ablanda y favorece la formación de ferrita
Níquel	Favorece +0.35	Decrece ligeramente estabilidad	Afina ligeramente	Decrece y estabiliza la perlita	Afina la perlita y da dureza
Cobre	Favorece +0.20	Indiferente	Indiferente	Decrece ligeramente	Da dureza
Manganeso	Se opone - 0.25	Estabiliza	Afina ligeramente	Aumenta	Afina la perlita y da dureza
Molibdeno	Se opone - 0.30	Indiferente	Afina ligeramente	Aumenta ligeramente	Afina la perlita y da dureza
Cromo	Se opone -1	Estabiliza fuertemente	Afina ligeramente	Aumenta	Afina la perlita y da dureza
Vanadio	Se opone -2.5	Estabiliza fuertemente	Afina	Aumenta	Afina la perlita y da dureza

Fuente: Apraiz, 1999

Modificación que se produce	Si	Mn	Ni	Cr	Al	Мо
Desplazamiento del punto eutéctico.	Hacia la izquierda	Hacia la derecha	Hacia la izquierda	Hacia la izquierda	-	-
Desplazamiento de la temperatura eutectoide.	Hacia arriba	Hacia abajo	Hacia abajo	Hacia abajo	Hacia arriba	-
Templabilidad	-	Aumenta	-	Aumenta	Reduce	Aumenta
Desplazamiento del punto eutectoide.	Hacia la izquierda	-				

Tabla 4. Influencia de los elementos en la situación de los puntos críticos del diagrama hierro-carbono

Fuente: Apraiz, 1999

Capítulo 3 Chatarra de fundición y carbón de piedra

3.1. El horno de cubilote

Consiste en su versión más simple en una carcasa metálica cilíndrica recubierta en su interior por material refractario. Posee una puerta de carga en la parte superior por donde entran el combustible sólido, el material metálico que se quiere fundir y algunos aditivos, como ferroaleaciones y fundentes.

Por la parte inferior, cerca al fondo del horno se encuentra una fila de toberas, a través de las cuales se inyecta aire, éste a su vez reacciona con el combustible sólido originándose la combustión que produce la energía necesaria para el proceso. Los productos gaseosos de la combustión ascienden por el horno, calentando y fundiendo todo el metal cargado, y después salen por la chimenea. El metal fundido desciende a través de la cama del combustible sólido separándose en millones de gotas metálicas, las cuales se reúnen en el crisol del horno y salen por la piquera de metal. La escoria originada, para operaciones de colada intermitente, sale por la piquera de escoria, mientras que, en colada continua, tanto el metal fundido como la escoria salen por un canal de colada. Como puede verse, el horno de cubilote parte del principio del flujo a contracorriente continuo, donde los diferentes materiales descienden y los gases ascienden a través del horno (Pérez, 2007). En la figura 21 se observa un esquema tradicional del horno cubilote.

Figura 21. Horno de Cubilote Fuente: Baquero, 2000

3.2. Zonas del cubilote

El cubilote presenta varias zonas en donde se presentan diferentes fenómenos termoquímicos. En la figura 22 se indican estas zonas.

Figura 22. Localización de las zonas en el cubilote Fuente: Medina y Taco, 2009

Las cinco zonas más comúnmente citadas son: la de precalentamiento, la de fusión, la de oxidación, la de reducción y el crisol. En orden descendente y partiendo de la puerta de carga hasta la solera, describiremos cada zona.

3.2.1. Zona de precalentamiento

Como su nombre lo indica en esta zona se calientan las cargas metálicas. El calentamiento se opera por el contacto con los gases calientes de la combustión que suben hacia la chimenea. La zona de precalentamiento se extiende desde el plano inferior de la puerta de carga hasta la zona de fusión. Finalmente se habla de la existencia de una débil carburación, en especial de la chatarra de acero, por la presencia de CO y una muy pequeña sulfuración por la existencia de SO₂ en esta zona. Sin embargo, el poco tiempo de contacto que existe entre la chatarra y los gases de esta zona, hace que las reacciones sean prácticamente imperceptibles (Bautista y Jerez, 2005). La reacción más importante, es la disociación de la caliza (Pérez, 2007):

 $CaCO_3 \rightarrow CaO + CO_2$

Ec. 3.1

3.2.2. Zona de fusión

La posición de esta zona en el cubilote depende en gran medida de diseño de la marcha. Se sitúa a la altura de la cama del combustible sólido, que en el caso de la figura 3.2 es una cama de coque. La zona de fusión limita en su extremo superior con la zona de precalentamiento y en su extremo inferior con la zona de gasificación del combustible sólido. Su espesor depende del porcentaje de acero en la carga y/o del espesor de la chatarra. A medida que el porcentaje de acero en la carga aumenta y/o el espesor de los constituyentes se incrementa, más extensa es la zona de fusión. Es decir, las cargas fundirán más abajo, lo cual trae como consecuencia una disminución de la temperatura de la fundición.

Generalmente se considera que la temperatura en la zona de fusión varía entre los 1200°C a 1500°C. Al llegar a esta zona la carga metálica se funde en pequeñas gotas que se deslizan sobre la superficie de los trozos de combustible sólido, aumentando su contenido en carbón y azufre. A medida que la carga metálica se funde, su espacio es ocupado por el material que está encima, y el combustible sólido que se gasta en la zona de combustión en fundir dicha carga, es reemplazado por el combustible sólido entre carga. De esta manera, se busca que la altura de la cama de combustible sólido varíe lo menos posible (Bautista y Jerez, 2005).

3.2.3. Zona de oxidación

Se encuentra cercana a las toberas y es donde ocurre la reacción de combustión, por tanto, es rica en dióxido de carbono; la extensión de esta zona depende de las condiciones del soplo (temperatura, caudal, enriquecimiento con oxígeno, etc.), de las características del combustible (reactividad y tamaño), del diámetro y tipo de refractario del horno. Es precisamente en esta zona donde se produce el calor necesario para el proceso (Medina y Taco, 2009).

Las reacciones que se dan en esta zona son las siguientes (Pérez, 2007):

$C_{combustible} + O_2 \rightarrow CO_2$	Ec. 3.2
$2Fe + O_2 \rightarrow 2FeO$	Ec. 3.3
$FeO + Mn \rightarrow Fe+ MnO$	Ec. 3.4
$FeO + Si \rightarrow 2Fe + SiO_2$	Ec. 3.5
$FeO + C \rightarrow Fe + CO$	Ec. 3.6

3.2.4. Zona de reducción

Las zonas de reducción son ricas en monóxido de carbono. La zona de reducción superior debido a la gasificación del combustible sólido por CO_2 y, la zona de reducción inferior, debido a las reacciones de oxidación del silicio y del carbono en el metal en la zona del crisol. La extensión de la zona de reducción superior depende de la altura de la cama y de las condiciones del soplo, especialmente del caudal. El tamaño de la zona de reducción inferior depende de la diferencia de altura entre las toberas y la parte superior de la capa de escoria en el crisol (Medina y Taco, 2009). Las reacciones que se dan en esta zona son las siguientes (Pérez, 2007):

$C + CO_2 \rightarrow 2CO$	Ec. 3.7
$FeO + C \rightarrow Fe + CO$	Ec. 3.8
$SiO_2 + 2C \rightarrow Si + 2CO$	Ec. 3.9
$MnO + C \rightarrow Mn + CO$	Ec. 3.10
$P_2O_5 + 5C \rightarrow 2P + 5CO$	Ec. 3.11
$SiO_2 + S + 2C \rightarrow SiS + 2CO$	Ec. 3.12

3.2.5. Zona de crisol

Es la zona donde las reacciones están más relacionadas con la composición química del metal que con la combustión; en ella ocurren la separación del metal y la escoria debido a su diferencia de densidades, la recuperación del carbono en el metal por el contacto con el combustible sólido y reacciones de oxidaciónreducción en la interface metal escoria (Medina y Taco, 2009). Las reacciones que se dan en esta zona son las siguientes (Pérez, 2007):

$Fe + O_{metal} \rightarrow FeO_{Escoria}$	Ec. 3.13
$C + O_{metal} \rightarrow CO_{gas}$	Ec. 3.14
$Si_{metal} + 2O_{metal} \rightarrow SiO_{2Escoria}$	Ec. 3.15
$Mn_{Metal} + O_{Metal} \rightarrow MnO_{Escoria}$	Ec. 3.16
$2P_{Metal} + 5O_{Metal} \rightarrow P_2O_{5Escoria}$	Ec. 3.17
$S_{2Escoria} + O_{Metal} \rightarrow S_{Metal} + O_{2Escoria}$	Ec. 3.18

3.3. Combustibles para el cubilote

3.3.1. Combustibles sólidos

Dentro de los combustibles sólidos se puede diferenciar entre naturales, como la biomasa, el carbón o la madera, o artificiales como el coque, el carbón vegetal o los aglomerados, que se obtienen mediante la aplicación de calor sin existencia de aire (piro-generación).

Clasificación de combustibles sólidos						
			Maderas y residuos vegetales			
	NATURALES		Turbas			
		Carbón	Lignitos			
SÓLIDOS		Carbon	Hullas			
SOLIDOS			Antracita			
			Coques (carbón y petróleo)			
	ARTIFICIALES		Aglomerados y briquetas			
			Carbón vegetal			

Fuente: Entrena, 2016

3.3.2. Composición de los combustibles sólidos

Los combustibles sólidos pueden diferenciarse por sus características físicas y químicas, las que determinan su idoneidad para varios usos. Los combustibles sólidos se componen principalmente de carbono. Éstos generan materia volátil cuando se calienta a temperaturas de descomposición. Además, contienen humedad y material mineral que forma cenizas. El carbono, hidrógeno, nitrógeno, azufre y oxígeno también se encuentran presentes. La combinación de estos elementos y las porciones de materia volátil, ceniza y agua varían considerablemente de un tipo de combustible sólido a otro. El contenido de

carbono fijo y de materia volátil determinan su valor energético y propiedades de coquización. El contenido de carbono fijo generalmente influye el contenido energético del carbón. Mientras mayor sea el contenido de carbono fijo, mayor será el contenido energético del combustible sólido. A continuación, describiremos algunos de los elementos más importantes de la composición de los combustibles sólidos:

3.3.2.1. Materiales volátiles

Es la proporción de la muestra de carbón, disecada al aire, que se libera en forma de gas durante un ensayo normalizado de calentamiento. La materia volátil es un rasgo positivo para el carbón térmico, pero puede ser negativo para el carbón coquizable.

3.3.2.2. Ceniza

Es el residuo que queda luego de la combustión completa de toda la materia orgánica del carbón y la descomposición de la materia mineral que contiene el combustible sólido. Mientras más alto el contenido de ceniza, menos es la calidad del combustible sólido. Un alto contenido de ceniza significa un menor valor calorífico (un menor contenido energético por tonelada de carbón) y mayores costos para su transporte. La mayoría del combustible sólido para exportación se lava para reducir su contenido de ceniza (beneficiación) y asegurar una calidad consistente.

3.3.2.3. Contenido de humedad

Se refiere a la cantidad de agua presente en el carbón. Los costos del transporte se aumentan directamente con el contenido de humedad. Se puede eliminar la humedad excesiva luego de la beneficiación en las plantas de preparación, pero esto aumenta sus costos de manejo. La humedad es un contaminante físico del coque que reduce el poder calórico del combustible en relación con la cantidad contenida.

3.3.2.4. Carbono fijo

El carbono fijo en % es igual a 100 menos el porcentaje de humedad, de materias volátiles y de cenizas.

3.3.2.5. El contenido de azufre

Aumenta los costos operativos y de mantenimiento para los usuarios finales. Altos contenidos de azufre causan emisión del dióxido de azufre para los productores de fundición. El carbón con poco azufre hace que sea innecesario tener que eliminar el azufre con el fin de cumplir con las reglamentaciones sobre las emisiones atmosféricas.

Para el caso de la operación en el cubilote el combustible sólido deberá tener las siguientes características más importantes:

- El tamaño de cada pieza deberá ser lo más uniforme posible.
- El contenido de carbono y poder calórico deberán ser elevados.
- Las cenizas, la humedad, las materias volátiles y el azufre deberán ser bajos.

3.3.3. Carbón natural

Hay diferentes tipos de carbón natural dependiendo de la edad mismo y de las condiciones de presión y temperatura de su formación. Así, tenemos hullas y antracitas de poder calorífico en torno a 5000 kcal/kg, a los lignitos de 3500 a 2000 kcal/kg. (Scarpellini y Zabalza, 2008)

Los distintos tipos de materia orgánica, así como las diferentes condiciones a la que ésta se vio sometida durante el proceso metamórfico, dan lugar a la gran variedad de carbones que hoy se conocen. Las propiedades del carbón dependen tanto del tiempo de duración del proceso como de los rangos de presión y temperatura a los que este se vio sometido. En la tabla 6 se pueden observar la clasificación ASTM de los distintos tipos de carbón.

CLASE	GRUPO	CARBONO FIJO%		MATERIA VOLÁTIL%		cal/gr hlmm		CARACTER	
		Sln	nm	SI	mm	· · · · · ·		110D011D101111D	
		>	<	>	<	>	<		
а	1.Meta-Antracita	98			2			No aglomerante	
acit	2.Antracita	92	98	2	8				
Antı	3.Semiantracita	86	92	8	14				
	1.Bituminoso Bajo volátil	78	86	14	22				
080	2.Bituminoso Medio volátil	69	78	22	31			Comúnmente aglomerante	
imino	3.Bituminoso Alto volátil A		69	31		7780 ^(b)			
Bit	4.Bituminoso Alto volátil B					7220	7780		
	5.Bituminoso Alto volátil C					6380 5830	7220 6380	Aglomerante	
(1.Sub bituminoso A					5830	3680		
ninose	2.Sub bituminoso B					5280	5830	No aglomerante	
Sub- bitur	3.Sub bituminoso C					4610	5280		
9	1. Lignito A					3500	4610		
Ligni	2.Lignito B						3500	No aglomerante	

Tabla 6. Clasificación ASTM de carbones por rango

Fuente: American Society for Testing Materials, ASTM D388

Slmm: Base seca libre de material mineral.

Hlmm: Base húmeda libre de materia mineral. Se refiere a la humedad que contiene el carbón como integrante natural, pero no incluye agua visible sobre la superficie del carbón.

Notas:

Esta clasificación no incluye unos pocos carbones, especialmente variedades no bandeadas, las cuales tienen propiedades químicas y físicas no usuales que caen dentro de los límites de carbono fijo o poder calorífico de los rangos bituminoso alto en volátiles y sub bituminoso. Contiene menos de 48% de carbono fijo (Slmm).

- Si aglomera clasifica en el grupo de bajo volátil de la clase bituminoso.
- Carbones en carbono fijo ≥ 69% se clasifican de acuerdo a esta variable, sin tener en cuenta el poder calorífico.
- Puede haber variedades no aglomerantes.

A continuación, se describe las principales características de los combustibles naturales más en usados en fundición (Capello, 1966):

3.3.3.1. Carbón de piedra

Los carbones de piedra se pueden clasificar según su contenido en materias volátiles: así se habla de carbones con el 30 al 40% de materias volátiles (carbones de llama larga o carbones de gas), de otros con el 19 al 30%. La humedad natural varía del 3 al 5%, y las cenizas del 3 al 10%.

Su tamaño es muy variado, para adaptarse a los hornos de distintos tipos en los que es empleado, es decir, en los llamados de reverbero, sean fijos, sean giratorios, que están en uso especialmente en las fundiciones de hierro colado maleable y de bronce. Algunas de estas instalaciones utilizan el carbón muy finamente molido e insuflado en la cámara de combustión con aire comprimido.

3.3.3.2. Antracita

Por su bajísimo contenido de ceniza y de materias volátiles es especialmente adecuada para la carburación del hierro colado y del acero líquido. En determinadas proporciones se, puede usar también en los cubilotes, substituyendo en un 10% al coque de carga.

La leña obtenida de los árboles recién cortados contiene del 20 al 60% de agua. Después del secado desciende del 10 al 2%. Hay leña fuerte y dura (acacia, roble, etc.) y leña tierna o blanda (pino, abeto, etc.). En cifras redondas la composición media es la siguiente: carbono 50%, oxígeno 44%, hidrógeno 6%. Cortada en trozos se usa en las fundiciones en general para labores secundarias, para la puesta en marcha de las estufas o cubilotes, para el calentamiento y el secado de calderos de fundir y para alimentar hogares provisionales.

3.3.3.4. Carbón de leña

Destilando leña fuerte en hornos de tipo primitivo o bien en retortas a la temperatura de 300 a 400°C se obtiene un combustible con un 80 a 90% de carbono, 2 a 3% de hidrógeno, 5 a 7% de oxígeno y 2 a 4% de cenizas. Subproductos de esta destilación son el gas, el alquitrán y el ácido acético bruto. El carbón de leña substituye al coque en muchas aplicaciones cuando éste último escasea o cuando la diferencia de precios resulta ventajosa. El poder calorífico inferior es de 6500 a 7000 kcal/kg.

3.3.3.5. Hulla

Es sin lugar a dudas el combustible sólido más importante, tanto para las reservas mundiales como el uso que se hace de ellas. Es la más empleada, por su buen poder calorífico, abundancia, buena combustión y diversos usos. Un aspecto en contra de la hulla es que contiene elevadas cantidades de azufre que son una fuente muy importante de contaminación del aire.

Algunos carbones de este tipo, cuando se calientan en ausencia de aire, se restablecen y liberan volátiles para formar un sólido poroso, duro y negro: el coque.

3.3.4. El coque

Se emplea en los cubilotes de las fundiciones de hierro colado, en los hornos de crisol de las fundiciones de metales y aleaciones férreas y no férreas, en las estufas para el secado de los moldes y los machos. El coque se obtiene destilando fuera del contacto del aire hulla de llama larga (reducida a fragmentos menudos) en baterías de retortas o de cámaras. Los establecimientos donde se realiza esta operación reciben el nombre de coquerías. El coque para fundición debe ser un coque de baja reactividad, denso, poco poroso, con buena organización estructural, buena resistencia mecánica. Una tonelada de hulla da, aproximadamente, de 270 a 300 m³ de gas, de 650 a 700 kg de coque y de 30 a 40 kg de alquitrán y otros productos químicos.

La hulla para cubilote debe poseer unas particulares características físicas y químicas, y especialmente:

- Debe ser compacta, es decir, poco porosa y que no se rompa con facilidad.
- Tamaño adecuado, entre los 90 y los 250mm. La elección del tamaño dependerá del diámetro interno del cubilote.
- Peso volumétrico entre 460 y 480 kg/m³.
- Análisis químico: Cenizas 8% máximo, azufre 0.8% máximo, materias volátiles 1%, humedad 4% máximo.

El coque para fundición, debe cumplir con las siguientes características:

- No aumentar el contenido de azufre de la fundición.
- Carburar el metal (según las necesidades de la carga del cubilote).
- Permitir colar una fundición caliente.

Para la producción de hierro colado común se puede emplear coque de segunda selección en el cual, con las mismas condiciones físicas, se puede tolerar un máximo del 1% de azufre, del 9% de cenizas, del 2% de materias volátiles y del 5% de humedad. (Capello, 1971).

A continuación, en la tabla 7, se muestra los tres carbones más importantes para el combustible del cubilote. Los valores son aproximaciones que se han encontrado en la literatura.

			r · · · · · · ·				
						PCI	PCS
	%C	Azufre	Humedad	Cenizas	Volátiles	(kJ/kg)	(kJ/kg)
Antracita	86 a 98	1%	Menor a 15%	4 a 12%	2 a 14	8198	8293
Hulla	69 a 86	1%	15 a 20%	4 a 10%	14 a 31	7314	7505
Coque	84 a 90	>0.8%	3% aprox.	7 a 10%	1 aprox.	7003	8054
							~ .

Tabla 7. Resumen carbones para fundición

Fuente: Elaborado con datos tomados de: Norma ASTM D388; Manuel de Carbones y Coquización por Baez, 2004; Energías Renovables por Roldán, 2013

Costo

- La antracita se vende en el mercado peruano, cuyo costo aproximado es de S/.420 la tonelada.
- En cuanto al coque para fundición podemos decir que la industria siderúrgica es la gran consumidora de coque y para producirlo se debe partir de carbones bituminosos de calidad adecuada para ser coquificables. En el Perú no contamos con bituminosos que reúnan la composición química requerida y por otra parte no tenemos altos hornos de gran consumo de coque. La fuente de coque más cercana es de Colombia, luego sigue Brasil.
- Como dato referencial podemos decir que la empresa Shandong Gangda International Trading Co., Ltd. ubicada en China, vende coque de fundición y el precio oscila alrededor de US\$245 la tonelada.

• Los talleres de fundición del norte del Perú actualmente utilizan la antracita porque es más económica que el coque de fundición.

3.3.5. Fundentes

Los combustibles sólidos utilizados en las fundiciones para los hornos de fundir (cubilotes, hornos de reverbero, hornos eléctricos) contienen todos cantidades más o menos grandes de cenizas, cuya composición química se basa en dos elementos principales: sílice (SiO₂) y alúmina (Al₂O₃); y otros secundarios tales como la cal, la magnesia, el óxido de hierro, el azufre y el fosforo (Capello, 1971).

Pero estas mismas substancias están presentes también en las tierras y en las arenas que se adhieren a los lingotes de fundición, en las superficies corroídas de los revestimientos refractarios de los hornos, en los productos de disociación de las ferroaleaciones de corrección.

Todo esto da origen a compuestos complejos con puntos de fusión variables; en los fácilmente fusibles, el punto de fusión es inferior a 1200°C, en los fusibles está comprendido entre 1200 y 1350°C y en los difícilmente fusibles, entre los 1350 y 1650°C.

Para que las cenizas sean fusibles de modo que formen una escoria fácilmente separable del metal y que sea químicamente activa a los de la desulfuración, se emplean los llamados fundentes, es decir, la piedra caliza, la fluorina o espato flúor, la cal y el desescoriante.

a) La piedra caliza es el fundente normal para el hierro colado. Su composición debe oscilar en los límites siguientes: Cal, CaO = 54%; anhídrido carbónico, CO₂ = 42%; carbonato de calcio, CaCO₃= 96%; sílice, SiO₂ = 2% máximo; alúmina = 1 máximo; óxido de hierro = 1% máximo; óxido de magnesio = 1%; residuo = 3% máximo.

Una piedra caliza que contenga poca cal y mucha sílice debe considerarse de mala calidad y, si se emplea, debe aumentarse el volumen de la carga, no sólo de piedra caliza, sino también del coque necesario para fundir el mayor peso de escoria.

En condiciones normales se añade un peso de piedra caliza igual al 20 a 25% de la carga de coque, este porcentaje puede llegar al 30 a 40% en condiciones particularmente desfavorables.

El tamaño, debe ser aproximadamente el de una nuez (de 30 a 40 mm) completamente limpio de polvo.

 b) La fluorina o espato flúor contiene del 85 al 90% del elemento activo (fluoruro de calcio CaFl₂) y se presenta en fragmentos translúcidos, blancos, azulados, violáceos. Aumenta notablemente, la fluidez de la escoria y favorece la eliminación del azufre. Sin embargo, se debe emplear con mucho cuidado, en trozos mezclados con la piedra caliza en la proporción de 1 parte de fluorina por cada 5 partes de piedra caliza. En proporciones mayores puede perjudicar los materiales refractarios del recubrimiento

c) La cal (CaO) es la piedra caliza cocida para eliminar de la misma el anhídrido carbónico (CO₂) según la reacción:

 $CaCO_3 + CO_2 = CaO$

Ec. 3.19

Se emplea en trozos no humedecidos para las operaciones de fusión en el horno eléctrico con recubrimiento de dolomita o magnesita, siempre con el objeto de formar las escorias que cubren el metal líquido y substraen sus impurezas (es decir, lo afinan).

d) El desescoriante se utilizan en fundición como eliminador de impurezas de colada fundente. Es una sílice aluminosa y en condiciones normales es químicamente inerte. Se aplica directamente sobre la colada, actúa como coagulante de las impurezas, formando una pequeña costra en la superficie del metal fundente fácilmente eliminable.

En el funcionamiento del cubilote se forma la escoria en una medida del 4 al 8% respecto a la carga metálica. Su color, que debe ser amarillo oscuro, su fluidez que debe ser buena pero no excesiva, su fractura que debe ser vítrea y compacta, son un indicio de las condiciones de marcha del cubilote.

La presencia durante la formación de escoria en el cubilote de la llamada lana de escoria, es decir, de hilachas blancuzcas parecidas al algodón o a la lana, que se depositan en todo su alrededor, parece ser un indicio favorable para el curso de la operación. Una composición normal puede ser la siguiente:

Composición	Porcentaje
Sílice	40 a 50%
Sílice cal + magnesia	20 al 35%
Alúmina	8 al 15%
Óxido de hierro y de manganeso	Hasta un 10%
Evente: Canalla 1071	

Tabla 8. Composición de la escoria en horno cubilote

Fuente: Capello, 1971

Puede suceder también que se forme una escoria foco fusible, espesa y lenta por exceso de piedra caliza. En tal caso se debe recurrir a la adición de trozos de cuarcita o de espatoflúor.

El examen y la comprobación de la cantidad y de las características de las escorias es uno de los medios más eficaces para el buen funcionamiento no sólo del cubilote, sino también de los hornos eléctricos y de los hornos de fundición en general.

3.4. Materias primas para el horno cubilote

Los tipos de materias primas se pueden clasificar de acuerdo a su contenido de carbono. Existen materiales de alto carbono, de medio carbono, y de bajo carbono. Un cuarto grupo consiste en aleaciones y ferroaleaciones.

3.4.1. Materiales de alto carbono

La tabla 9 muestra las composiciones típicas de materiales de alto carbono. Donde C.T indica el carbono total presente en el material, tal como se explicó en el apartado 2.2.4.

Tabla 9. Materiales de alto carbono

	C.T%	%Si	%Mn	%S	%P
Arrabio	3.4 - 4.5	0.5 - 4.0	0.7 - 1.0	0.05 máx	0.05 máx
Hierro afinado	3.4 - 3.6	0.75 - 3.5	0.3 – 1.2	0.05 máx	0.1 máx
Hierro de base dúctil	3.8	0.05 - 3.0	0.01 - 0.20	0.02 máx	0.04 máx

Fuente: Brown, 2000

El principal material con alto contenido de carbono para la fusión en el cubilote es el arrabio, un producto metálico obtenido a partir de la reducción de minerales de hierro en el alto horno. Hierros afinados se producen generalmente en cubilotes u hornos eléctricos, utilizando chatarra seleccionada. Hierros de base dúctil son hechos de minerales especialmente puros, y tienen muy bajos contendidos de elementos residuales (Brown, 2000).

Para la producción de fundición gris se emplea el arrabio. La única desventaja del uso de arrabio es que es caro, por lo que debe ser utilizado lo más económicamente posible. La producción de arrabio se da en alto horno siderúrgico y actualmente en el Perú no se encuentra ninguno operativo, por ello se debe importar. Los precios de arrabio para fundición nodular, fluctúan aproximadamente entre US\$600 por tonelada y se debe traer en contenedores con peso mínimo de 30 TM. En el mercado local se puede conseguir arrabio sintético, cuyo precio es de aproximadamente S/.3 el kilo más I.G.V, el cual es elaborado en la capital del país.

3.4.2. Materiales de medio carbono

3.4.2.1. Chatarra de fundición

La chatarra de fundición ofrece una amplia gama de materiales de medio carbono. El mejor suministro de chatarra de fundición debería ser la propia chatarra de retorno de los fundidores, siempre y cuando se conozca su composición química, sin embargo, si se desconoce ésta información, el mejor suministro de chatarra dependerá de los materiales disponibles conocidos por los fundidores. Muy a menudo, sin embargo, aun cuando se utilice plenamente la chatarra de retorno, se tiene que comprar más chatarra, la cual está disponible en varios tipos, fácilmente identificables que se muestran en la Tabla 10.

Chatarra	C%	Si%	Mn%	S%	Р%
Mecánica general	3.0 - 3.40	1.80 - 2.20	0.45 - 0.50	0.08 -	0.8 - 1.12
(Maquinaria agrícola,				0.12	
maquinaria textil gruesa)					
Automotor (culatas,	3.0 - 3.30	1.90 - 2.20	0.60 - 0.90	0.08 -	0.10 - 0.40
cilindros, camisas de				0.12	
motores marinos). En					
general piezas de fundición					
resistentes					
Lingoteras	3.30 - 3.70	1.80 - 2.50	0.50 - 0.60	0.08 -	< 0.20
				0.12	
Fundición de decoración,	3.0 - 3.40	2.30 - 2.80	0.35 - 0.50	0.08 -	1.1 – 1.5
tubos y aparatos de				0.14	
calentamiento					
Cojinetes y zapatas para	3.3 - 3.40	2.0 - 2.40	0.35 - 0.45	0.08 -	1.0 - 1.6
frenos				0.12	

Tabla 10. Composición química de algunas chatarras de fundición

Fuente: Baquero, 2000

Cabe recalcar que el rango de composición química de cada material puede variar de acuerdo con la sección predominante o gobernante de las piezas fundidas que se producen; es por ello que en la literatura podemos encontrar tablas de composiciones químicas que pueden diferir unas de otras.

3.4.3. Materiales de bajo carbono

3.4.3.1. Chatarra de acero

La chatarra de acero es la principal fuente de materiales de bajo carbono para fusión en los cubilotes. Hay muchos tipos de chatarra de acero, y se debe tener cuidado en su selección, asegurándose de que el suministro de acero para la producción de fundición gris no esté contaminado con elementos de aleación como el cromo y el níquel, tungsteno, etc. que podría ser perjudicial para el metal producido. La tabla 11 muestra las composiciones químicas de chatarras de acero comúnmente encontradas en la literatura.

como carga.					
Chatarra	C%	Si%	Mn%	S%	P%
Resortes	0.35 - 0.65	1.0 - 1.60	0.50 - 1.0	≤0.05	≤0.05
Rieles	0.30 - 0.45	0.25	0.60 - 1.0	≤0.05	0.04 - 0.7
Blindaje	0.40 - 0.50	0.25 - 0.50	0.60 - 2.0	0.02	0.01
Tornillería	0.10 - 0.20	0.10-0.35	0.20 - 0.45	0.03 - 0.6	0.03 - 0.06
Herraduras	0.10	-	0.40 - 0.45	-	0.04 - 0.06
Perfiles	0.10	-	0.35 - 0.40	-	0.07 - 0.08
Láminas gruesas	0.20 - 0.30	-	-	0.04 - 0.06	0.06 - 0.08
Láminas delgadas	0.10	0	0.20 - 0.45	0.03 - 0.05	0.03 - 0.05
Laminas para caldera	0.17 - 0.25	0.25 - 0.60	0.30 - 1.5	0.04 - 0.05	0.04 - 0.05
Láminas para barco	0.18 - 0.25	0.25 - 0.35	0.40 - 0.60	0.04 - 0.06	0.04 - 0.05
Pasadores para rieles	0.10 - 0.15	-	0.45 - 0.50	-	0.07 - 0.08

Tabla 11. Composición química de algunas chatarras de acero frecuentemente utilizadas como carga.

Fuente: Baquero, 2000

Es sabido entre los fundidores que la calidad de la chatarra tanto de fundición como de acero utilizada, define la calidad del metal elaborado. Ésta calidad depende de tres factores: homogeneidad de la composición química, naturaleza física y su origen (Baquero, 2000):

Homogeneidad de la composición química

Primero que todo, hay que hacer una distinción entre la chatarra que se produce internamente en la fundición y la chatarra adquirida externamente. Bajo este criterio y en orden descendente de calidad o de regularidad en la composición química, las chatarras se pueden clasificar de la siguiente:

Chatarra de procedencia interna	Chatarra de procedencia externa			
Retornos de fundición (mazarotas, bebederos etc.)	Lotes homogéneos comprados a empresas de transformación			
Retornos provenientes de la sección de mecanizado	Recuperación de viejas chatarras			
Viruta	Chatarra pequeña (tuercas, tornillos, etc.)			
	Viruta			

Tabla 12. Clasificación de la chatarra

Fuente: Baquero, 2000

Naturaleza física

Este criterio está definido por las dimensiones de la chatarra. Una chatarra gruesa introduce menos humedad, óxidos, tierra aceite, grasa, pintura, etc., que los productos delgados, que además son más difíciles de evaluar globalmente en relación con su composición química. Por esta razón, la chatarra muy delgada, por ejemplo, las virutas, requiere de mucho cuidado cuando se utilizan como carga. Para evitar mayores contratiempos, se recomienda suprimir su empleo, o limitarlo de un 10% a un 15% del peso de la carga metálica.

Origen

El tercer criterio que determina la calidad de la chatarra es más difícil de precisar, debido a la existencia en el mercado nacional de productos ferrosos de diversas procedencias. Por ejemplo, es muy complicado establecer si la chatarra de acero proviene de un producto que fue elaborado en un horno eléctrico de arco, básico o ácido, convertidor al oxígeno, horno Martin, o convertidor Thomas.

Es recomendable también tomar las siguientes recomendaciones (Baquero, 2000):

- Órganos metálicos sujetos a la exposición prolongada del calor, parrillas de hornos de tratamiento térmico, quemadores de estufas, etc., están fuertemente oxidados y generalmente son ricos en azufre. La chatarra de acero de herramienta, con contenidos apreciables de cromo, vanadio, molibdeno, etc., pueden volver completamente inservible la fundición. La presencia de lima, buriles de torno, bolas de molino, piezas de trituradoras, deben, por lo tanto, excluirse de la carga.
- Otro factor que debe tenerse en cuenta en la preparación de la carga es el relacionado con la densidad de la chatarra a granel. No se recomienda el uso de chatarra de acero delgada por la baja densidad que ellas tienen. Así, la chatarra de acero que se carga debe tener un espesor comprendido entre 8 mm y 15 mm para reducir la relación volumen/peso.
- La mayor dimensión de la chatarra de fundición debe ser menor a la mitad del diámetro interno del horno, y la mayor dimensión de la chatarra de acero, debe ser menor a un tercio del diámetro interno del horno.

3.4.4. Ferroaleaciones

Las ferroaleaciones, que constituyen el cuarto grupo de materiales de carga, se pueden utilizar como una parte de la carga del cubilote para regular principalmente los niveles del silicio y manganeso en la fundición. Ferrosilicio contiene aproximadamente entre 75-80% de Si. Ferromanganeso contiene aproximadamente entre 75-80% de Mn. La adición de materiales de aleación en forma de briquetas es el método más popular de adición. (Brown, 2000).

Algunas consideraciones sobre las ferroaleaciones son las siguientes (Baquero, 2000):

• Las adiciones de elementos de aleación en la carga deben efectuarse con ferroaleaciones con bajo porcentaje del elemento que se agrega, mientras que las adiciones en la cuchara, deben realizarse con ferroaleaciones que tengan alto contenido del elemento de aleación.

• La eficiencia de la adición del silicio en la cuchara, es función de la temperatura de la fundición líquida, llegando aproximadamente a ser máxima a una temperatura cercana a los 1475°C. Dicha eficiencia, que puede hacerse extensiva al manganeso, puede en primera aproximación considerarse igual a 100%; sin embargo, en la práctica industrial será necesario admitir una pequeña variación influenciada por la formación de escoria, pérdidas de volatilización, imprecisiones en el peso, granulometría fina, temperatura de tratamiento, entre otras.

3.5. Cambios en la composición durante la fusión

Cuando se calcula los porcentajes de varios tipos de materiales metálicos para usarlos en las cargas de cubilotes, es necesario saber qué cambios ocurrirán en la composición durante la fusión. La tabla 13 da un indicador aproximado de los cambios esperados en una operación normal de cubilote. Cabe recalcar que los valores de esta tabla son solamente una guía. Los valores reales se determinan por prueba y error y con la experiencia. Tomando en consideración lo anterior, los valores que se encuentran en la bibliografía difieren según diversos autores. Por lo cual los valores mostrados en la tabla 13 los tomaremos de referencia para los cálculos que se verán más adelante.

Elemento	Efecto		
Carbono	Aumenta del 10-25% del carbono en la carga, aunque el aumento puede		
	ser más elevado, como nos daremos cuenta más adelante, empleando la		
	ecuación 3.19.		
Silicio	Se supone una pérdida del 15% del silicio en la carga, pero se pueden		
	producir mayores pérdidas si se utilizan cargas elevadas de acero.		
Manganeso	Las pérdidas de manganeso son de aproximadamente 25%, pero variará		
	de acuerdo a la técnica de fusión.		
Fósforo	No existe ganancia ni pérdida		
Azufre	Aumenta aproximadamente de $0.04 - 0.065\%$ de S.		

Tabla 13. Cambios aproximados en la composición durante la operación del horno cubilote

Fuente: Bawa, 2004 y Bhardwaj, 2014

3.5.1. Carbono

El contenido de carbono del material cargado, casi siempre incrementa, ya que el metal disolverá parte del carbono del combustible del cubilote a medida que cae a través de la zona de fusión. Hay muchos factores que afectan la cantidad de la ganancia de carbono durante la fusión tales como:

- El contenido de carbono inicial de la carga
- Los contenidos de silicio y fósforo
- La cantidad de combustible usado en la carga
- El método de colada del metal
- Basicidad de la escoria
- La temperatura de colada

El carbono total debe ser determinado por la experiencia en una operación de cubilote particular; sin embargo, la siguiente "ecuación de Levi" es una buena guía para comenzar a estimar el posible carbono total: (Bhardwaj, 2014):

CT% en la colada estim. = $2.4 + \frac{CT\%$ en la carga}{2} - \frac{Si\% + P\% en la colada estim. Ec. 3.20

3.5.2. Silicio

En el horno de cubilote casi siempre hay oxidación del silicio, y esto normalmente asciende al 15 por ciento del nivel del silicio cargado. Esta cifra puede variar, dependiendo de la técnica de fusión; por ejemplo, la pérdida se reduce con altas temperaturas de colada, mientras que en general se incrementa al aumentar el porcentaje de acero en la carga.

3.5.3. Manganeso

Al igual que con el silicio, también se pierde manganeso durante la fusión, debido a la oxidación. Esta pérdida es generalmente alrededor de 25 por ciento del nivel de manganeso cargado, aunque variará de acuerdo a la técnica de fusión.

3.5.4. Azufre

El contenido de azufre del hierro siempre se incrementa en la operación del cubilote. El aumento depende de muchos factores, tales como:

- La cantidad del combustible en la carga
- La basicidad de la escoria
- La cantidad del acero en la carga
- El contenido de azufre en el combustible

No existe ningún método fiable para predecir el contenido de azufre colado, pero en la práctica, la ganancia de azufre puede ser tan baja como 10 por ciento y tan alta como 80 a 90 por ciento del nivel de azufre cargado. Para el cálculo de cargas de hornos de cubilote, por lo tanto, debemos tener datos previos de la magnitud de la ganancia del azufre en condiciones de funcionamiento similares.

3.5.5. Fósforo

El fósforo colado es generalmente considerado igual al fósforo cargado. Puede existir un pequeño incremento, pero normalmente éste es tan pequeño que es insignificante.

3.6. Composición química de las piezas de fundición gris

La composición de la fundición determina en gran medida la resistencia a la tracción. Los intervalos de composición generalmente empleados en la producción de los diversos grados de la mayoría de las piezas fundidas de hierro gris para automóviles se muestran en la tabla 14. Esta clasificación viene dada por la norma ASTM A159, la cual tiene su equivalencia para la norma ASTM A48. En la tabla 15 vemos dicha equivalencia, esto es importante ya que utilizaremos la norma ASTM A48 para caracterizar el material obtenido de los diversos talleres de fundición del norte del Perú.

Cabe recalcar que el rango de composición específica para un grado dado, puede variar de acuerdo con la sección predominante o gobernante de las piezas fundidas que se producen. Por tanto, este será una guía que se corroborará con la resistencia a la tracción que se obtendrá de los materiales analizados.

Grado	Carbono %	Silicio %	Manganeso %	Azufre máx. %	Fósforo máx. %	Carbono equivalente aproximado %
G1800	3.40-3.70	2.30-2.80	0.50-0.80	0.15	0.25	4.25-4.50
G2500	3.20-3.50	2.00-2.40	0.60-0.90	0.15	0.20	4.00-4.25
G3000	3.10-3.40	1.90-2.30	0.60-0.90	0.15	0.15	3.90-4.15
G3500	3.00-3.30	1.80-2.20	0.60-0.90	0.15	0.12	3.70-3.90
G4000	3.00-3.30	1.80-2.10	0.70-1.00	0.15	0.10	3.70-3.90

 Tabla 14.
 Composiciones base típicas de piezas fundidas de hierro gris

Fuente: American Society for testing Materials, ASTM A159

de fundiciones grises				
ASTM A48	ASTM A159			
Clase 20	G1800			
Clase 25	G2500			
Clase 30	G3000			
Clase 35	G3500			
Clase 40	G4000			
E G 1 ¹	0016			

 Tabla 15.
 Equivalencia de normas para la clasificación

Fuente: Guhring, 2016

La norma ASTM A159, se aplica a las fundiciones de hierro gris, fundidas en moldes de arena, utilizadas en los productos de automóvil, camiones, tractores e industrias relacionadas. Las piezas de fundición, de acuerdo a esta norma, deberán ser representativas de una buena práctica de fundición y deberán ajustarse a las dimensiones y tolerancias especificadas en el diseño de dichas piezas; mientras que la norma ASTM A48, se aplica a las fundiciones de hierro gris destinadas al uso general de ingeniería donde la resistencia a la tracción es una consideración importante, subordinando a la composición química. (ASTM, 2001).

Es por ello que ambas normas son equivalentes siempre y cuando las piezas analizadas según la norma ASTM A48, tengan las mismas especificaciones que la norma ASTM A159.
3.7. Cargas típicas del horno cubilote

Algunos autores experimentados sugieren determinadas cargas iniciales para producir varias clases de fundición gris. Brown (2000), sugiere en la tabla 16 las cargas típicas que producen las clases de fundición más frecuentes.

Clase 20	Clase 25	Clase 35	
25% de arrabio	30% de arrabio bajo en	25% de arrabio bajo en	
	fósforo	fósforo	
40% de retornos del taller	35% de retornos del taller	35% de retornos del taller	
de fundición	de fundición	de fundición	
30% de chatarra de	20% de chatarra de	15% de chatarra baja en	
fundición comprada	fundición bajo en fósforo	fósforo	
5% de chatarra de acero	15% de chatarra de acero	25% de Chatarra de acero	
D 0 000			

Tabla 16. Cargas típicas del horno cubilote

Fuente: Brown, 2000

3.8. Cálculo de la carga del cubilote

La tabla 17 muestra un caso de una carga que consiste en 50% de arrabio que contiene 3% de silicio, y 50% de chatarra de acero con un 0.2% de silicio.

rabia 17. Calculo de la carga para sincio.						
	%Si	Contribución a la carga				
50% Arrabio	3.0	$3.0 \ge 0.5 = 1.50\%$				
50% Chatarra de acero	0.2	$0.2 \ge 0.5 = 0.10\%$				
		Total = 1.60%				

Tabla 17. Cálculo de la carga para silicio.

Fuente: Elaboración propia

Se observa que el arrabio contribuye con 1.5% de silicio a la composición de la carga; y el acero contribuye con 0.1% de silicio a la composición de la carga. Sumados estos dos valores, la composición final de carga será 1.60% de silicio. Este mismo cálculo se lleva a cabo para los demás elementos que componen estos materiales metálicos.

Cálculo de carga para una fundición gris de clase 35 con arrabio

A continuación, se verá el cálculo de carga para una fundición gris de clase 35, cuya hoja de cálculo de carga se muestra en la tabla 18.

Basándonos en la tabla 16 de las cargas típicas para el horno cubilote, elegimos los materiales con sus respectivos porcentajes que se sugieren para producir una fundición de clase 35. Una vez hecho eso, se calculan las cantidades de carbono, silicio, azufre, manganeso y fósforo aportado por cada material en la composición final de la carga. Para este ejemplo se añade 0.2% de silicio y 0.2% de manganeso como ferroaleaciones en forma de briquetas. Posteriormente, sumando todos estos valores, se determina la composición en la carga.

			Composición				Contribución a la carga					
		TC	Si	Mn	Р	S		TC	Si	Mn	Р	S
Arrabio	25%	3	3	1	0.05	0.05	×0.25	0.75	0.75	0.25	0.01	0.01
Retornos de clase 35	35%	3.2	1.7	0.7	0.1	0.15	×0.35	1.12	0.60	0.25	0.04	0.05
Chatarra de fundición	15%	3.2	2.2	0.8	0.15	0.15	×0.15	0.48	0.33	0.12	0.02	0.02
Chatarra de acero	25%	0.1	0.1	0.3	0.03	0.05	×0.25	0.03	0.03	0.08	0.01	0.01
Ferroaleaciones									0.2	0.2		
Composición en la carga								2.38	1.90	0.89	0.08	0.10
Cambio en la fusión		En e En e En e	En el C=3.16-2.38 En el Si=0.15×1.90 En el Mn=0.25×0.89				+0.78	-0.29	-0.22		0.04	
Composición después del cambio de fusión								3.16	1.61	0.67	0.08	0.14
Adición en la cuchara									+0.25			
Composición estimada		En el C=2.4+2.38/2- (1.61+0.08)/4					3.16	1.87	0.67	0.08	0.14	

Tabla 18. Hoja de cálculo de carga para fundición de clase 35

Fuente: Bhardwaj, 2014

En este caso, se ha asumido una pérdida de silicio del 15% del nivel cargado y una pérdida del 25% de manganeso, como lo sugiere la tabla 3.9. No se espera ningún cambio en el contenido de fósforo. Después de la determinación de los contenidos de silicio y fósforo que se esperan después del cambio que sufren en la fusión, y conociendo el nivel de carbono cargado, la ecuación 3.20 se puede utilizar para determinar el contenido de carbono final estimado en la colada.

La experiencia previa de operar el cubilote es el único método para determinar la absorción de azufre y, en este caso, se ha estimado en 0.04%, como lo sugiere la tabla 3.9. El hierro colado se trata en la cuchara añadiendo 0.25% de silicio como ferrosilicio. La comparación de la composición final calculada con la composición de fundición de clase 35, muestra que los contenidos obtenidos de los elementos analizados están dentro del rango permitidos para esta clase de fundición.

Para obtener una fundición de la composición requerida en el canal de colada del cubilote usando los materiales disponibles, los componentes de la carga y sus proporciones deben ser ajustados, tomando como punto de partida la carga de cubilote que se sugiere originalmente. En este caso, se empleó la carga típica para una fundición 35, y no se tuvo la necesidad de ajustar los porcentajes porque se cumplió con el requerimiento pedido, en el caso de que no haya sido así, se hubiera tenido que ajustar hasta cumplir con la composición pedida, mismo proceso que se seguiría con las consideraciones tomadas en los cambios aproximados en la composición durante la operación del cubilote.

Una vez estando fijas las proporciones de los materiales, el peso total de la carga debe ser determinado junto con los pesos de los componentes individuales. El peso de la carga debe ser de aproximadamente una décima del peso del metal fundido en una hora de soplado continuo, es decir, 10 cargas por hora. Si la velocidad de fusión es 10 t/h, el peso de la carga que se empleará será de una tonelada. Para la carga de la tabla 18 los pesos de los componentes individuales serían:

para una clase 55						
250kg	Arrabio bajo en fósforo					
350kg	Retornos de fundición de clase 35					
150kg	Chatarra de fundición bajo en fósforo					
250kg	Chatarra de acero.					

Tabla 19.	Pesos individuales para la hoja de cálculo de carga
	para una alasa 25

Fuente: Elaboración propia

Para el cálculo de las cantidades de ferroaleaciones, al tener el peso total de la carga y sabiendo el porcentaje de adición de silicio y manganeso, procedemos a multiplicar ambos valores, obteniéndose 2 kilos tanto de silicio puro como de manganeso puro. Si utilizamos briquetas de silicio y manganeso, cada una de 1 kg, entonces se necesitarían 2 de estas briquetas por carga.

Cálculo de carga para una fundición gris de clase 35 sin arrabio

Actualmente en los talleres de fundición de nuestro estudio no se utiliza arrabio; por ello, veremos un ejemplo en el cual en los materiales de carga para el cubilote no esté este material, acercándonos a la realidad actual de la operación del horno cubilote en el norte del Perú.

Se utilizará un material de alto carbono, lo más parecido al arrabio, en este caso se ha escogido chatarra de lingoteras. Este cambio exige que, para alcanzar los contenidos adecuados de carbono, silicio, manganeso, fósforo y azufre se utilicen materiales distintos al caso anterior, escogiéndolos siempre de las tablas 10 y 11.

En la tabla 20 se muestran los materiales escogidos y los resultados de los cálculos realizados para la condición de una clase 35 sin arrabio. Cabe recalcar, que el procedimiento y las consideraciones seguidas para realizar este cálculo de carga, son iguales a los utilizados para una fundición gris de clase 35 con arrabio en cuanto a los cambios aproximados en la composición durante la operación del horno y al uso de ferroaleaciones de silicio y manganeso.

			Composición				Contribución a la carga					
		TC	Si	Mn	Р	S		TC	Si	Mn	Р	S
Lingoteras	25%	3.3	2.8	0.5	0.2	0.12	0.25	0.83	0.70	0.13	0.05	0.03
Retornos de fundición de clase 35	35%	3.2	1.7	0.8	0.1	0.15	0.35	1.12	0.60	0.28	0.04	0.05
Chatarra de Automotor	15%	3	2.2	0.8	0.1	0.12	0.15	0.45	0.33	0.12	0.02	0.02
Chatarra de tornillería	25%	0.1	0.1	0.3	0.03	0.05	0.25	0.03	0.03	0.08	0.01	0.01
Ferroaleaciones									0.2	0.2		
Composición en la carga								2.42	1.85	0.80	0.11	0.11
Cambio en la fusión		En el C=3.19-2.42 En el Si=0.15×1.85 En el Mn=0.25×0.80				+0.77	-0.28	-0.20		0.04		
Composición después del cambio de fusión								3.19	1.57	0.60	0.11	0.11
Adición en la cuchara									+0.25			
Composición estimada		En e	En el C=2.4+2.42/2-(1.57+0.1			11)/4	3.19	1.87	0.60	0.11	0.15	

Tabla 20. Hoja de cálculo de carga para fundición de clase 35 sin arrabio

La comparación de la composición final calculada con la composición de fundición de clase 35, muestra que los contenidos obtenidos de los elementos analizados están dentro del rango permitido para esta clase de fundición.

En el caso de los talleres analizados la velocidad promedio de fusión es aproximadamente 2.4 t/h, lo que nos da un peso de carga de 240Kg aproximadamente. Para la carga de la tabla 20 los pesos de los componentes individuales serían:

carga para una clase 35						
250kg	Chatarra de lingoteras					
350kg	Retornos de fundición de clase 35					
150kg	Chatarra de automotor					
250kg	Chatarra de tornillería					

Tabla 21.Pesos individuales para la hoja de cálculo de
carga para una clase 35

Fuente: Elaboración propia

Para el cálculo de las cantidades de ferroaleaciones, obtenemos 0.5 kilos tanto de silicio puro como de manganeso puro. Si utilizamos briquetas de silicio y manganeso, cada una de 1 kg, entonces se necesitarían una de éstas briquetas por carga.

3.9. Carga de menor costo

Hay muchas maneras en las cuales una carga del cubilote puede ser elegida para dar la composición requerida en el canal de colada del cubilote. Por ejemplo, si tenemos ocho diferentes materiales de carga disponibles y sólo se requieren cinco de éstos en la carga, hay 56 diferentes combinaciones de carga que darán la correcta composición en el canal de colada. Habrá, sin embargo, solamente una combinación que tendrá el costo más bajo y dará el mayor beneficio por tonelada de piezas fundidas.

Se debe tener en cuenta que, después de haber calculado el peso exacto de las diversas materias primas necesarias en una carga, es importante que se pesen con precisión. El metal fundido colado del cubilote será más uniforme en composición si los componentes de la carga son correctamente pesados.

Capítulo 4 Caracterización de las muestras y la materia prima de diez talleres de fundición participantes

4.1. Talleres de fundición participantes

Se visitaron diez talleres de fundición en el norte del Perú, de los cuales obtuvimos muestras de fundición gris y, en algunos casos, de su materia prima, además de información referente a la fabricación de sus piezas de fundición. Dichos talleres están ubicados en los siguientes departamentos:

Tabla 22. Talleres	participantes		
Departamento	Taller		
La libertad	Taller 1		
La libertad	Taller 2		
La libertad	Taller 3		
La libertad	Taller 4		
Lambayeque	Taller 5		
Lambayeque	Taller 6		
Lambayeque	Taller 7		
Piura	Taller 8		
Piura	Taller 9		
Piura	Taller 10		

Fuente: Elaboración propia

4.2. Barras para caracterizar fundiciones grises

Para estandarizar una fundición gris, se sigue la norma ASTM A48, la cual se utilizó para nuestro estudio. Lo que busca esta norma es clasificar las fundiciones de acuerdo a su resistencia a la tracción. Para ello, se parte de una barra estandarizada para luego poder obtener una probeta a tracción y posteriormente hacer el ensayo a tracción.

La norma ASTM A48 sugiere cuatro barras con dimensiones diferentes, como se puede ver en la tabla 4 del apéndice B. La barra que se eligió fue la barra S, la cual especifica que todas sus dimensiones son acordadas por el fabricante y el comprador. Por lo tanto, lo que resultó conveniente para nuestro estudio era una barra que tenga las dimensiones que se muestran en la figura 23. Las barras utilizadas tienen una longitud sobredimensionada, ya que, de ésta, se obtendrán las muestras para el análisis metalográfico y de dureza.

Cabe recalcar que algunos talleres no fabricaron barras, para tales casos se analizaron trozos de las piezas que ellos fabrican.

Figura 23. Barra estándar para análisis del proyecto Fuente: Elaboración propia

4.3. Procedimiento pre-análisis

Una vez proporcionada la barra por el taller, lo que se hace a continuación es hacer dos cortes en la barra, tal como se muestra en la figura 24. Los dos discos obtenidos, se emplearán para el análisis metalográfico y de dureza. Una vez hecho los dos cortes, en seguida, se procede a fabricar la probeta para hacer el ensayo de tracción. En el caso del análisis químico al no utilizar todo el material de los discos extraídos, se sacará de aquí la viruta necesaria para determinar, posteriormente, la composición química.

En los casos en los que no se tuvo barra sino, un trozo de una pieza, se hizo un corte a la misma en una zona representativa, procediéndose a cortarla en dos, para realizar los análisis de dureza y metalográfico. Al no ser una barra, en esas piezas no se pudo hacer el ensayo de tracción.

Figura 24. Obtención de discos Fuente: Elaboración propia

4.4. Muestras entregadas por cada taller

En la tabla 23, se listan todas las muestras entregadas por los talleres participantes. Cinco talleres hicieron una única entrega, tres talleres dos entregas y dos talleres tres entregas, como se ve en la tabla inferior.

1 abia 25.	Touas las II	luestias enti	egauas	por los talleres participantes			
Taller	Entrega	Muestra		Descripción			
Taller 1	10	Barra	M1	Ø66mm x 400mm de largo			
	l^a	Barra	M2	Ø66mm x 150mm de largo			
	2 ^a	Barra	M3	Ø55mm x 300mm de largo			
Taller 2	Única	Barra	M5	Ø60mm x 230mm de largo			
Taller 3	Única	Mango	M6	Pieza fundida denominada "manguito"			
Taller 4	1a	Aro base	M7	Trozo de cocina mejorada			
	1	Trozo	M8	Trozo de aro base			
	2 ^a	Barra	M9	Ø55mm x 300mm de largo			
Taller 5	1 ^a	Barra	M11	Ø55mm x 220 mm de largo			
	2 ^a	Barra	M12	Ø55 mm x 300 mm de largo			
Taller 6		Trozo	M14	Trozo pequeño irregular			
	Única	Pieza	M15	Ø30mm x 130mm de largo			
		Pieza	M16	Ø80mm x100mm de largo			
Taller 7	Única	Barra	M17	Ø55mm x 300mm de largo			
Taller 8	1 ^a	Barra	M19	Ø55mm x 250 mm de largo			
	2 ^a	Barra	M20	Ø55mm x 300mm de largo			
	2 a	Barra	M21	Ø55mm x 300mm de largo			
	5	Barra	M22	Ø55mm x 300mm de largo			
Taller 9		Barra	M23	Ø60 mm x 230 mm de largo			
	1 ^a	Barra	M24	Ø60 mm x 230 mm de largo. Molde en coquilla			
		Barra	M25	Ø55 mm x 230 mm de largo			
	2 ^a	Barra	M26	Mazarota en forma de barra			
		Barra	M27	Ø50 mm x 230 mm de largo			
	3 ^a	Barra	M28	Ø52 mm x 230 mm de largo			
		Barra	M29	Ø54 mm x 230 mm de largo			
Taller 10	Única	Barra	M30	Ø32 mm x 300 mm de largo			

Tabla 23. Todas las muestras entregadas por los talleres participantes

Fuente: Elaboración propia

4.4.1. Taller 1

Este taller proporcionó tres barras como se muestra en la figura 25. Las dimensiones de estas barras se muestran en la tabla 23. Se extrajo viruta de cada barra para determinar su composición química. De todas las barras se extrajeron las dos muestras para el ensayo de metalografía y dureza, pudiéndose observar en la figura 39, sus respectivas muestras. Se realizó el ensayo de tracción de las muestras M1 y M3; sin embargo, no se pudo realizar dicho ensayo para la barra M2 porque su longitud fue muy corta. En la figura 46 se puede observar las probetas ya traccionadas de las barras que se les hizo el ensayo de tracción.

Figura 25. Muestras del taller 1 Fuente: Elaboración propia

4.4.2. Taller 2

Este taller proporcionó una barra, mostrándose en la figura 26 partes de ella. Se extrajo viruta de esta barra para determinar su composición química. Las dimensiones de esta barra se muestran en la tabla 23. Se extrajeron las dos muestras para el ensayo de metalografía y dureza, pudiéndose observar en la figura 39, su respectiva muestra. No se pudo realizar el ensayo a tracción, ya que en el proceso de fabricación de la probeta aparecieron defectos, como se muestra en la figura 27.

Figura 26. Muestra del taller 2 Fuente: Elaboración propia

Figura 27. Probeta de tracción con defectos Fuente: Elaboración propia

4.4.3. Taller 3

Este taller proporcionó una pieza de fundición, tal como se muestra en la figura 28. Se extrajo viruta de esta muestra para determinar su composición química, pudiéndose observar en la figura 39, su respectiva muestra. Se extrajeron las dos muestras para el ensayo de metalografía y dureza. Al no ser una barra, no se logró realizar el ensayo de tracción.

Figura 28. Muestra del taller 3 Fuente: Elaboración propia

4.4.4. Taller 4

Este taller proporcionó tres muestras como se muestra en la figura 29. Se extrajo viruta de esta barra para determinar su composición química. Las muestras M7 y M8, son trozos de piezas fabricadas en este taller; mientras que la muestra M9 es una barra, cuyas dimensiones se muestran en la tabla 23. De todas las

muestras se extrajeron las dos muestras para el ensayo de metalografía y dureza, pudiéndose observar en la figura 39, sus respectivas muestras. Se realizó en el ensayo de tracción de la muestra M9, cuya probeta ya traccionada se puede observar en la figura 46; mientras que las muestras M7 y M8 al no ser barras, no se realizó dicho ensayo.

Figura 29. Muestras del taller 4 Fuente: Elaboración propia

4.4.5. Taller 5

Este taller proporcionó dos barras como se muestra en la figura 30. Se extrajo viruta de cada barra para determinar su composición química. Las dimensiones de estas barras se muestran en la tabla 23. De todas las barras se extrajeron las dos muestras para el ensayo de metalografía y dureza, pudiéndose observar en la figura 39, sus respectivas muestras. Se realizó el ensayo de tracción de la muestra M12, cuya probeta ya traccionada se puede observar en la figura 46; sin embargo, no se pudo realizar dicho ensayo para la barra M11 porque su longitud fue muy corta.

Figura 30. Muestras del taller 5 Fuente: Elaboración propia

4.4.6. Taller 6

Este taller proporcionó tres muestras como se muestra en la figura 31. La muestra M14 es un trozo de una pieza fabricada en este taller; mientras que la muestras M15 y M16 pertenecen a una misma pieza, también fabricada en este taller. Se extrajo viruta de la M14 para determinar la composición química, mientras que las muestras M15 y M16, al pertenecer a una misma pieza sólo se sacó viruta a la M15, cuyo resultado de composición química es similar a la muestra M16. Como se indica en la figura 31, se identificaron dos zonas de la pieza, cuyas dimensiones como zonas se muestran en la tabla 23, de las cuales se procedió a extraer una muestra para la zona 1; siendo ésta la muestra M15, y una muestra para la zona 2; siendo ésta la muestra M16.

De todas las muestras se extrajeron las dos muestras para el ensayo de metalografía y dureza, pudiéndose observar en la figura 39, sus respectivas muestras. La longitud de la pieza de donde se extrajo las muestras M15 y M16 sí alcanzaba para hacer una probeta de tracción. Se intentó fabricarla, sin embargo, en pleno proceso de fabricación la probeta se rompió tal como se puede observar en la figura 32. La muestra M7 al no ser barra, se pudo realizar el ensayo a tracción.

Figura 31. Muestras del taller 6 Fuente: Elaboración propia

Figura 32. Muestras del taller 6 Fuente: Elaboración propia

4.4.7. Taller 7

Este taller proporcionó una barra como se muestra en la figura 33. Se extrajo viruta de esta barra para determinar su composición química. Las dimensiones de esta barra se muestran en la tabla 23. Se extrajeron las dos muestras para el ensayo de metalografía y dureza, pudiéndose observar en la figura 39, sus respectivas probetas. Se realizó el ensayo de tracción, cuya probeta ya traccionada se puede ver en la figura 46.

Figura 33. Muestra del taller 7 Fuente: Elaboración propia

4.4.8. Taller 8

Este taller proporcionó cuatro barras como se muestra en la figura 34. Se extrajo viruta de las barras M19, M20 y M21 para determinar su composición química, la M22 al ser de la misma colada que la muestra 21, no se extrajo, siendo su composición similar a esta barra. Las dimensiones de estas barras se muestran en la tabla 23. Se extrajeron las dos muestras para el ensayo de metalografía y dureza. En la figura 39, se muestran las probetas obtenidas. Se realizó el ensayo de tracción de todas las barras, cuyas probetas ya traccionadas se pueden ver en la figura 46.

Figura 34. Muestras del taller 8 Fuente: Elaboración propia

4.4.9. Taller 9

Este taller proporcionó siete barras como se muestra en la figura 35. Para determinar sus composiciones químicas se extrajo viruta solo de las barras M23, M26 y M27. Del resto no se extrajo ya que las muestras M24 y M25 son de la misma colada de la muestra M23, y las muestras M28 y M29 son de la misma colada de la muestra M27. Las dimensiones de estas barras se muestran en la tabla 23. En la figura 39, se muestran las probetas que se extrajeron de todas las barras, para el ensayo de metalografía y dureza. No se pudo realizar el ensayo de tracción para la barra M23, ya que en el proceso de fabricación de la probeta aparecieron defectos, como se muestra en la figura 36, para el resto de barras si se pudo hacer el ensayo de tracción, cuyas probetas ya traccionadas se pueden ver en la figura 46.

Figura 35. Muestras del taller 9 Fuente: Elaboración propia

Figura 36. Probeta de tracción con defectos Fuente: Elaboración propia

4.4.10. Taller 10

Este taller proporcionó una barra como se muestra en la figura 37. Se extrajo viruta de esta barra para determinar su composición química. Las dimensiones de esta barra se muestran en la tabla 23. Las probetas para los ensayos de metalografía y dureza extraídas de la barra, se muestran en la figura 39. Se realizó el ensayo de tracción, cuya probeta ya traccionada se puede ver en la figura 46.

Figura 37. Muestra del taller 10 Fuente: Elaboración propia

4.5. Análisis realizados

4.5.1. Análisis químico

- El contenido de carbono (C) y azufre (S), se determina mediante el principio de combustión, extrayendo viruta de las muestras de fundición gris entregadas por los talleres de fundición. Para esto se ha utilizado un equipo Analizador de Carbono y Azufre marca LECO, modelo CS-400.
- El contenido de manganeso se determinó mediante el método de espectroscopia de absorción atómica basado en SM 3500 SM 3111 B, utilizando viruta de las probetas de fundición gris.
- El contenido de silicio se determinó mediante el método espectroscopia de absorción atómica basado en SM 3500 SM 3111 D, utilizando viruta de las probetas de fundición gris.
- El contenido de fósforo se determinó mediante el análisis cuantitativo microestructural que se explicará en el apartado 4.5.2.2.
- Como se indicó anteriormente en cada taller existen muestras que pertenecen a la misma colada, por lo tanto, sólo se realizó el análisis químico de una muestra, cuyo resultado será el mismo para las muestras que correspondan a la misma colada; es por ello que, de las 26 muestras analizadas, sólo fue necesario realizar 20 análisis químicos.

4.5.2. Análisis metalográfico

4.5.2.1. Técnica metalográfica para las fundiciones

- La caracterización metalográfica se ha realizado mediante visualización en un microscopio metalográfico invertido, marca UNITRON U.S.A, modelo MEC3, con sistema óptico UNITRON NIS LWD. Con cámara digital CMOS a color de 5,0 Megapíxeles y software INFINITY 6,5.
- Los procedimientos de preparación metalográfica para probetas extraídas de las muestras tipo barra, previos a la visualización, se detallan a continuación:
- Se corta en forma de fracción circular, tal como se muestra en la figura 38. Para el caso de las muestras que no son barras y no se puede tener esta forma, se realiza un embebido o embutido en resina para mejorar la maniobrabilidad. En la figura 39 se puede observar todas las muestras utilizadas para este análisis.

Figura 38. Sección de probeta a analizar para la caracterización metalográfica para las muestras tipo barra cilíndrica Fuente: Elaboración propia

Figura 39. Probetas para el análisis metalográfico, obtenidas de las barras y piezas entregadas por los talleres

- Se procede con el desbastado de la superficie a evaluar, utilizando lijas abrasivas entre N°80 y N°800.
- Luego, la etapa de pulido se efectúa en paños de pelo largo (Microcloth) y utilizando como abrasivo, pasta de diamante de 3 μ m y 1 μ m; ejerciendo presiones no muy fuertes sobre la probeta. Para comprobar el correcto pulido de la probeta, se realizan observaciones previas de la superficie en el microscopio.

• Las probetas de fracción circular, se analizan en tres zonas: central, intermedia y periferia, como se presenta en la figura 40. En el caso de las muestras que no tengan esta sección, en el capítulo de resultados se especificará que zonas se ha analizado.

Figura 40. Zonas para caracterización metalográfica para probetas con sección tipo fracción circular Fuente: Elaboración propia

- La primera fase de visualización en el microscopio, se realiza, con la probeta en estado de pulido, con el objetivo de clasificar el grafito presente en la probeta, según la norma ASTM A247. En nuestro análisis, se han tomado la Norma equivalente, UNE 36117, que se muestra en el Anexo A.
- La clasificación del grafito consiste en determinar la forma, distribución y el tamaño del mismo dentro de la matriz. Este último, es una parte importante de la clasificación del grafito, para lo cual se ha considerado tomar diez (10) medidas (aunque la norma no lo menciona, nos aseguramos con una buena muestra), y se contrastan con el cuadro 1 de la norma UNE 36 117(ver Anexo A, cuadros A, B y C).
- Finalmente, se realiza el ataque de la superficie de la probeta con reactivo Nital (solución de ácido nítrico en alcohol), para revelar y analizar la microestructura de la matriz.

4.5.2.2. Determinación de la fracción volumétrica de la esteadita

Las piezas que se han analizado son mayoritariamente perlíticas, es por ello que, de todas las fases existentes, la que más interesa es la esteadita; ya que ésta, si está en gran contenido, hace que la fundición se fragilice.

Para determinar la fracción de volumen de una fase se pueden emplear tres métodos posibles: el análisis de área, el análisis lineal y el análisis puntual. El método que se empleará es el análisis de área, en el cual mediremos el área de la fase (en este caso la esteadita) mediante el uso de un programa de procesamiento de imagen digital de dominio público llamado ImageJ.

El procedimiento se detalla a continuación:

Se fotografía una región bastante representativa de la microestructura de la muestra que se quiere analizar, el aumento que se ha utilizado es el de 274.16X, ya que para este estudio es el más adecuado. En la figura 41 se observa una imagen representativa de una muestra atacada con nital, donde se aprecia secciones claras blancas, las cuales son las que interesa medir su área.

Figura 41. Imagen a analizar Fuente: Elaboración propia

Una vez tomada la fotografía, se abre el programa ImageJ, cuya interfaz se muestra en la parte superior izquierda de la figura 42. A continuación, se abre la imagen a analizar, de la siguiente manera: File \rightarrow Open, luego elegimos la imagen.

Teniendo la imagen abierta, se cambia el tipo de la imagen, a una imagen blanco y negro, de la siguiente manera: Image \rightarrow Type \rightarrow RGB Stack. En la figura 42 se observa como cambió la imagen de color a blanco y negro

Se abren las dos herramientas que se emplerán para medir áreas, de la siguiente manera: La primera es Image \rightarrow Adjust \rightarrow Threshold, la segunda es Analyze \rightarrow Tools \rightarrow ROI Manager. La imagen 42 muestra las ventanas empleadas, que están al costado izquierdo de la imagen a blanco y negro.

Figura 42. Interfaz del programa Image J Fuente: Elaboración propia

El paso siguiente es: En la ventana de la herramienta threshold, se mueve la barra de desplazamiento superior, hacia la derecha, tal como se indica en la figura 43, esto hará que resalten las zonas más claras de la imagen, y el resto se convierta en un fondo azul.

Primero se mide el área total de la imagen, lo cual se hace con la herramienta "rectangular", la cual se encuentra en la barra de herramientas, es la herramienta que tiene una forma de un rectángulo. Una vez seleccionada toda la imagen pulsamos "Add [t]", de la ventana ROI Manager.

Posteriormente, se utiliza la herramienta "Wand tool", cuya forma en la barra de herramientas, es una barra con una estrella en su lado superior, su función es contornear las áreas más claras. Se seleccionan dichas áreas, y luego se pulsa "Add [t]" de la ventana ROI Manager. Cabe recalcar en este paso que, se tiene que verificar con la imagen original cuales son las áreas que realmente corresponden a la fase esteadita ya que todas las zonas claras no pertenecen a ésta fase.

Figura 43. Análisis de la esteadita en el programa Image J Fuente: Elaboración propia

El siguiente paso es presionar el botón "Measure" de la ventana ROI Manager. Aparecerá una ventana como se muestra en la figura 44. En ésta ventana, se aprecia que, en la columna de área, aparecen dos medidas, la primera corresponde al área total de la imagen y la segunda es la suma de todas las áreas claras que vienen a ser el área de la fase esteadita.

₫ F	Results	_		×	
File	Edit For	nt Results	S		
	Area	Mean	Min	Мах	<u> </u>
1	4915200	127.228	45	255	
2	42831	249.210	211	255	-
•					•

Figura 44. Resultados de las áreas medidas Fuente: Elaboración propia

Las medidas calculadas son el número de pixeles que hay en una zona contorneada. En la primera medida, seleccionamos toda el área de la figura, por lo cual según el resultado ésta tiene 4915200 píxeles. En la segunda medida, hemos seleccionado las zonas más claras, la suma de ellas, según los resultados es 42831 píxeles.

Para calcular la fracción del área de la fase esteadita, se divide la suma de las áreas de las zonas claras entre el área total esto es 42831/4915200 lo que resulta una fracción de área de fase esteadita de

0.00871. Para fines posteriores, conviene tener esta fracción en porcentaje por tanto se multiplica por 100, resultando un porcentaje de esta fase de 0.871%.

Este cálculo se repite con 16 fotos más representativas de la muestra a analizar. Al tener estos datos, se promedian todos los porcentajes obtenidos, resultando un porcentaje aproximado de esteadita de cada muestra

Cálculo del porcentaje de fósforo

Teniendo el porcentaje de volumen de la esteadita, se puede inferir el porcentaje de fósforo de la siguiente manera: En la figura 19 se muestra las superficies de liquidus calculadas en el diagrama de fase Fe-C-P, donde se puede inferir lo siguiente:

Se tienen los valores $y_c=0.099$, $y_p=0.123$, que corresponden al eutéctico ternario en la solidificación estable, que sería el punto donde se forma la esteadita.

Para hallar la fracción en peso se aplican las fórmulas que se vieron en el capítulo 2, en el apartado 2.2.3: $Y_p=X_p/(1-X_c)$ y $Y_c=X_c/(1-X_c)$, X_p .

Donde X_p es la fracción en peso del fósforo. Reemplazando los valores se tiene que $X_p=0.986$.

Por lo tanto, el porcentaje de fósforo que tiene la esteadita es de 9.86%. Si se calcula el porcentaje de volumen de la esteadita y se divide entre 9.86 se obtendrá el porcentaje de fósforo.

Siguiendo el ejemplo anterior del cálculo de la fracción volumétrica de la esteadita, se tiene un porcentaje de esteadita de 0.871%, dividiéndolo entre 9.86, da como resultado 0.088% que vendría a ser el porcentaje de fósforo de esta muestra. El ejemplo anterior es ilustrativo, como se mencionó en el apartado anterior, se calcula un promedio de porcentaje de esteadita, lo que se ha realiado es, a partir de éste dato, calcular el porcentaje de fósforo de todas las muestras.

4.5.3. Caracterización mecánica

La caracterización mecánica, consiste en determinar las propiedades mecánicas del material; en este caso, mediante el ensayo de tracción y dureza del material a evaluar, para el caso de las muestras tipo barra cilíndrica.

4.5.3.1. Ensayo de tracción

Este ensayo es de vital importancia, pues mediante el contraste del parámetro de resistencia a la tracción, con la Tabla 1 de la norma ASTM A48 (ver Apéndice C4), se puede clasificar el material en un grado estándar. Para realizar este ensayo se debe tener en cuenta lo siguiente:

Como se indicó al inicio del capítulo, la barra que se eligió para luego fabricar la probeta de tracción fue la barra S, la cual especifica que todas sus dimensiones son acordadas por el fabricante y el comprador. La especificación para esta probeta S, es la misma que para la barra; es decir las dimensiones son acordadas por el fabricante y el comprador; eligiendo las dimensiones que se muestran en la figura 45.

Figura 45, Medidas de la probeta de tracción Fuente: Elaboración propia

Se determina como medida de control de la probeta estándar, el área de la sección transversal de la zona elegida para la rotura.

Para efectuar el ensayo se utiliza una Máquina Probadora Universal Galdabini PMT 5, de 5 TM de capacidad máxima, la cual suministra la carga necesaria para la rotura de la probeta. En la figura 47 se muestra una probeta siendo traccionada. El parámetro de resistencia a la tracción se obtiene dividiendo la carga de rotura de la probeta entre el área inicial de la sección de rotura.

De todas las muestras, se fabricaron 16 probetas, haciéndose por tanto 16 ensayos de tracción, cuyas probetas traccionadas se ven en la figura 46.

Figura 46. Probetas de tracción una vez ensayadas Fuente: Elaboración propia

Figura 47. Probeta siendo traccionada Fuente: Elaboración propia

4.5.3.2. Ensayo de Dureza Brinell

Permite verificar la heterogeneidad mecánica de la muestra analizada en forma de barra cilíndrica, cuando los valores de dureza, obtenidos a lo largo de la sección, son muy variables (generalmente por encima de 10 HB de diferencia). Para realizar este ensayo se ha llevado a cabo el siguiente procedimiento:

- Se cortan trozos en forma de discos circulares de las muestras obtenidas de los talleres.
- Se procede con el desbastado de la superficie a evaluar, utilizando lijas abrasivas N° 80 y N° 180, en ese orden; con el objetivo de eliminar irregularidades superficiales como granulos, poros o rayas, inherentes al proceso de corte.
- Se realizan las medidas de dureza, utilizando el Durómetro Rockwell "GALILEO" A-200, mediante la técnica Brinell, carga de 187,5 kg y un indentador o penetrador de 2,5 mm de diámetro, a lo largo de la sección, entre centro y periferia.

Las muestras utilizadas para este análisis son idénticas a las muestras para metalografía por tanto sólo se ilustrará solo las muestras de metalografía.

4.6. Caracterización de la materia prima

4.6.1. Chatarra

Las chatarras de fundición conseguidas, son los siguientes:

Tipo de chatarra	Designación	Procedencia
Carcaza bomba delgada	C1	Taller 4
Carcaza bomba gruesa	C2	Taller 4
Volante de Motor 1	C3	Taller 4
Volante de Motor 2	C4	Taller 4
Bancada de motor	C5	Taller 8
Barrita cilíndrica	C6	Chatarrería Sullana
Cilindro de metal	C7	Chatarrería Sullana
Válvula	C8	Chatarrería Sullana
Disco	C9	Chatarrería Sullana
Motor	C10	Chatarrería Sullana
Trozo	C11	Chatarrería Sullana

Tabla 24. Chatarra empleada en los talleres de fundición

Fuente: Elaboración propia

Se realizaron los análisis químico, metalográfico, y del análisis mecánico solo se realizó el análisis de dureza, ya que al no ser barras no se pudo hacer el análisis metalográfico. En la figura 48, podemos ver todas las chatarras que se analizaron.

4.6.2. Combustible empleado

Las muestras de combustible conseguidos, son los siguientes:

Т	abla 25. Chatarra empleada	en los talleres de	fundición
	Muestras de combustible	Procedencia	
	Muestra 1	Taller 3	
	Muestra 2	Taller 8	

Fuente: Elaboración propia

De estas muestras sólo se realizó el análisis de carbono y azufre mediante el método de combustión (con equipos LECO) y el resto de parámetros bajo las normas ASTM correspondientes:

- Humedad Total (ASTM D3302-10).
- Cenizas (ASTM D3174-04/5142-09).
- Materia Volátil (ASTM D3175-07/ 5142-09).
- Carbono Fijo (ASTM D3172a).
- Azufre (ASTM D4239 Method 8).
- Poder Calorífico (ASTM D5865-07a).

Figura 48. Chatarras conseguidas Fuente: Elaboración propia

Capítulo 5 Resultados y discusión de resultados

En este capítulo se muestran y discuten los resultados de las pruebas realizadas a las muestras fundidas de los diez talleres, muestras de chatarra, análisis del combustible (carbón) y posibles modos de cargar la materia prima en el horno de cubilote para obtener fundiciones estandarizadas.

5.1. Resultados y discusión de las muestras de los diez talleres participantes

5.1.1. Análisis químico

En la tabla 26 se muestra el análisis químico realizado a las 26 muestras. Las que presentan valores idénticos, son aquellas que pertenecen a la misma colada: M21 y M22 para el taller 8; M23, M24 y M25 para el taller 9 y M27, M28 y M29 para el mismo taller.

Como se mencionó, los puntos y temperaturas críticas del diagrama Fe-C se ven modificados por los elementos silicio y fósforo, de modo que, es necesario calcular el carbono equivalente para poder clasificar estas fundiciones respecto al punto eutéctico.

En base a esto, en la tabla 26 se observa que la mayoría de las muestras presentan carbono equivalente menor a 4.25%, por lo que se clasifican como fundiciones hipoeutécticas, favorables para aplicaciones estructurales. Las muestras M12 del taller 5; y M20, M21 y M22 del taller 8, superan el valor de 4.25, por lo que son fundiciones grises hipereutécticas, ventajosas cuando se requieren propiedades térmicas. La muestra 9 del taller 4 y M19 del taller 8, son las que más se acercan a 4.25%, por lo que son fundiciones grises eutécticas, las cuales poseen una buena colabilidad, haciéndolas más apropiadas para la fabricación de piezas de secciones delgadas o complejas.

La repetibilidad de resultados, en este caso, la composición química de las muestras, es un factor muy importante ya que indica el dominio de la práctica de fabricación de un taller; es decir, evidencia si siguen un procedimiento definido que hace que los resultados se repitan, incluso si están fuera del rango estándar. Al respecto, se puede ver claramente en la columna correspondiente de la tabla 48,

que no hay una repetibilidad marcada en el carbono equivalente. Esto quiere decir que no hay un procedimiento estable en los talleres que harían que los resultados se repitan.

Taller	Entrega	Muestra	%C	%S	%Si	%Mn	%P	Ceq
	18	M1	3.382	0.168	1.81	0.50	0.081	4.01
Taller 1	1	M2	3.391	0.167	1.77	0.50	0.076	4.01
	2 ^a	M3	3.050	0.083	1.89	0.53	0.095	3.71
Taller 2	Única	M5	3.415	0.171	1.87	0.40	0.107	4.07
Taller 3	Única	M6	3.345	0.282	1.84	0.46	0.091	3.99
Taller 4	1a	M7	3.452	0.269	1.49	0.33	0.222	4.02
	1	M8	3.336	0.217	1.60	0.35	0.333	3.98
	2 ^a	M9	3.490	0.100	1.85	0.43	0.199	4.17
Taller 5	1 ^a	M11	3.323	0.152	1.77	0.46	0.117	3.95
	2 ^a	M12	3.750	0.150	1.74	0.38	0.117	4.37
Taller 6		M14	3.332	0.154	1.61	0.40	0.179	3.93
	Única	M15	3.294	0.170	1.52	0.43	0.077	3.83
		M16	3.294	0.170	1.52	0.43	0.077	3.83
Taller 7	Única	M17	3.310	0.145	2.27	0.28	0.141	4.11
Taller 8	1 ^a	M19	3.573	0.126	1.94	0.40	0.072	4.24
	2 ^a	M20	3.700	0.100	1.81	0.56	0.034	4.31
	2ª	M21	3.630	0.090	1.95	0.56	0.055	4.30
	5	M22	3.630	0.090	1.95	0.56	0.055	4.30
Taller 0		M23	3.080	0.116	1.89	0.56	0.103	3.74
1 aller 9 1 ^a	1 ^a	M24	3.080	0.116	1.89	0.56	0.086	3.74
		M25	3.080	0.116	1.89	0.56	0.106	3.74
	2 ^a	M26	2.850	0.117	2.05	0.47	0.108	3.57
		M27	2.880	0.092	1.86	0.44	0.095	3.53
	3 ^a	M28	2.880	0.092	1.86	0.44	0.095	3.53
		M29	2.880	0.092	1.86	0.44	0.095	3.53
Taller 10	Única	M30	3.270	0.162	1.54	0.26	0.452	3.93

Tabla 26. Composición química de las muestras entregadas

Fuente: Elaboración propia

En el capítulo 3 vimos que, si se siguen procedimientos de fabricación adecuados, la composición química conlleva determinadas propiedades mecánicas que permiten ubicar al material en una clase estándar específica. En concreto, para las clases mayores a 25 (buen comportamiento mecánico) la tabla 14 indica que los porcentajes de carbono deben ser menores de 3.4%

En la tabla 27 se han ordenado las muestras de acuerdo a contenidos crecientes de carbono equivalente, carbono y silicio. Se observa que más de la mitad de las muestras presentan contenidos de carbono menores a 3.4, lo que las acercaría a una clase 25, al menos por el porcentaje de carbono. Los talleres en los que se han obtenido estos resultados son el taller 1, taller 3, taller 6, taller 7, taller 9 y taller 10. Como en el caso del carbono equivalente, para este elemento tampoco existe repetibilidad de resultados, como se aprecia en la columna "%C" de la tabla 26.

Para el caso del silicio, en la tabla 14 del capítulo 3, se observa que el porcentaje mínimo para clases mayores a 25, es de 1.8% de silicio. En nuestro caso el porcentaje de silicio de las muestras analizadas es muy variado, presentándose valores comprendidos entre 1.49% hasta 2.27%, como se puede ver en la tabla 27. La mayoría de talleres cumple con este requisito, sin embargo, éstos están muy cerca al límite inferior. Ninguna de las muestras de los talleres 5, 6 y 10 cumplieron con el contenido mínimo de este elemento. El bajo contenido de silicio estabiliza la perlita y favorece la solidificación metaestable en piezas delgadas o con secciones estrechas. El único taller que muestra repetibilidad de resultados en cuanto a silicio es el taller 5.

En la tabla 28 se han ordenado las muestras de acuerdo a contenidos crecientes de carbono azufre, manganeso y fósforo. En cuanto al azufre como vimos en el capítulo dos, la bibliografía da unos estándares bien marcados, debiendo estar entre 0.05% a 0.12%. El porcentaje de azufre tiene bastante incidencia en las propiedades mecánicas y en la microestructura, siendo causante de muchos tipos de defectos debido a que el azufre ocasiona que la fundición pierda fluidez. En ese sentido, como podemos observar en la tabla 50, el porcentaje de azufre en todas las muestras es muy variado, va desde 0.083% a 0.282%, viendo claramente que la mayoría de las muestras, están por encima del rango recomendado. Los mayores contenidos de azufre se observan en las muestras de los talleres 3 y 4; mientras que los menores se observaron en el taller 1.

En la tabla 29 se especifica, de acuerdo a los porcentajes de azufre y manganeso medidos, qué probetas han cumplido con el rango mínimo de azufre y en cuáles, el contenido de manganeso es el adecuado para neutralizarlo. Es evidente que sólo el taller 9, con sus siete muestras ha presentado el rango de azufre adecuado, lo mismo que tres de las cuatro muestras del taller 8, y sólo una de los talleres 1 y 4. El único taller que muestra repetibilidad de resultados en cuanto a azufre, es el taller 5, aunque fuera del rango.

El elemento que neutraliza el contenido de azufre es el manganeso. Como se vio en el capítulo 3, el porcentaje mínimo para clases mayores a 25, es de 0.6%. La tabla 28 muestra que ninguna probeta llega a este valor estándar. Además, como se vio en capítulos anteriores, dada la afinidad entre el azufre y el manganeso, se determina un contenido mínimo de este elemento para neutralizar el porcentaje de azufre presente en la muestra. En este sentido, en la tabla 29 se muestra que los talleres 1, 8 y 9 fueron los únicos donde en algunas de sus muestras se encontró manganeso suficiente para neutralizar el azufre. En las muestras en que no se consiguió, se espera la aparición de defectos tipo microporos y microrrechupes por la falta de colabilidad de la fundición.

Del fósforo podemos decir que, en general es bajo; sin embargo, hay muestras que llegaron a tener elevados porcentajes de este elemento, el que tuvo mayor porcentaje fue la muestra 30 del taller 10. Muestran repetibilidad solo los talleres 5 y 9.

Después de haber analizado minuciosamente la composición química de las muestras, podemos decir que surge la necesidad de elevar el porcentaje de algunos elementos y disminuir el porcentaje de otros. Los elementos que se han encontrado deficientes son el silicio y manganeso, la solución práctica es añadir ferroaleaciones en cantidades adecuadas para conseguir que aumenten dichos niveles.

Carbono equivalente		Carbono			Silicio			
%Ceq.	Muestra	Taller	% C	Muestra	Taller	% Si	Muestra	Taller
3.53	M27	Taller 9	2.850	M26	Taller 9	1.49	M7	Taller 4
3.53	M28	Taller 9	2.880	M27	Taller 9	1.52	M15	Taller 6
3.53	M29	Taller 9	2.880	M28	Taller 9	1.52	M16	Taller 6
3.57	M26	Taller 9	2.880	M29	Taller 9	1.54	M30	Taller 10
3.71	M3	Taller 2	3.050	M3	Taller 1	1.60	M8	Taller 4
3.74	M23	Taller 9	3.080	M23	Taller 9	1.61	M14	Taller 6
3.74	M24	Taller 9	3.080	M24	Taller 9	1.74	M12	Taller 5
3.74	M25	Taller 9	3.080	M25	Taller 9	1.77	M2	Taller 1
3.83	M15	Taller 6	3.270	M30	Taller 10	1.77	M11	Taller 5
3.83	M16	Taller 6	3.294	M15	Taller 6	1.81	M1	Taller 1
3.93	M14	Taller 6	3.294	M16	Taller 6	1.81	M20	Taller 8
3.93	M30	Taller 10	3.310	M17	Taller 7	1.84	M6	Taller 3
3.95	M11	Taller 5	3.323	M11	Taller 5	1.85	M9	Taller 4
3.98	M8	Taller 4	3.332	M14	Taller 6	1.86	M27	Taller 9
3.99	M6	Taller 3	3.336	M8	Taller 4	1.86	M28	Taller 9
4.01	M1	Taller 2	3.345	M6	Taller 3	1.86	M29	Taller 9
4.01	M2	Taller 2	3.382	M1	Taller 1	1.87	M5	Taller 2
4.02	M7	Taller 4	3.391	M2	Taller 1	1.89	M3	Taller 1
4.07	M5	Taller 2	3.415	M5	Taller 2	1.89	M23	Taller 9
4.11	M17	Taller 7	3.452	M7	Taller 4	1.89	M24	Taller 9
4.17	M9	Taller 4	3.490	M9	Taller 4	1.89	M25	Taller 9
4.24	M19	Taller 8	3.573	M19	Taller 8	1.94	M19	Taller 8
4.30	M21	Taller 8	3.630	M21	Taller 8	1.95	M21	Taller 8
4.30	M22	Taller 8	3.630	M22	Taller 8	1.95	M22	Taller 8
4.31	M20	Taller 8	3.700	M20	Taller 8	2.05	M26	Taller 9
4.37	M12	Taller 5	3.750	M12	Taller 5	2.27	M17	Taller 7

Tabla 27. Porcentajes del carbono equivalente, carbono y silicio, ordenados de menor a mayor

Fuente: Elaboración propia

Azufre		Manganeso			Fósforo			
%S	Muestra	Taller	%Mn	Muestra	Taller	%P	Muestra	Taller
0.083	M3	Taller 1	0.26	M30	Taller 10	0.034	M20	Taller 8
0.090	M21	Taller 8	0.28	M17	Taller 7	0.055	M21	Taller 8
0.090	M22	Taller 8	0.33	M7	Taller 4	0.055	M22	Taller 8
0.092	M27	Taller 9	0.35	M8	Taller 4	0.072	M19	Taller 8
0.092	M28	Taller 9	0.38	M12	Taller 5	0.076	M2	Taller 1
0.092	M29	Taller 9	0.40	M5	Taller 2	0.077	M15	Taller 6
0.100	M9	Taller 4	0.40	M14	Taller 6	0.077	M16	Taller 6
0.100	M20	Taller 8	0.40	M19	Taller 8	0.081	M1	Taller 1
0.116	M23	Taller 9	0.43	M9	Taller 4	0.086	M24	Taller 9
0.116	M24	Taller 9	0.43	M15	Taller 6	0.091	M6	Taller 3
0.116	M25	Taller 9	0.43	M16	Taller 6	0.095	M3	Taller 1
0.117	M26	Taller 9	0.44	M27	Taller 9	0.095	M27	Taller 9
0.126	M19	Taller 8	0.44	M28	Taller 9	0.095	M28	Taller 9
0.145	M17	Taller 7	0.44	M29	Taller 9	0.095	M29	Taller 9
0.150	M12	Taller 5	0.46	M6	Taller 3	0.103	M23	Taller 9
0.152	M11	Taller 5	0.46	M11	Taller 5	0.106	M25	Taller 9
0.154	M14	Taller 6	0.47	M26	Taller 8	0.107	M5	Taller 2
0.162	M30	Taller 10	0.50	M1	Taller 1	0.108	M26	Taller 9
0.167	M2	Taller 1	0.50	M2	Taller 1	0.117	M11	Taller 5
0.168	M1	Taller 1	0.53	M3	Taller 1	0.117	M12	Taller 5
0.170	M15	Taller 6	0.56	M20	Taller 8	0.141	M17	Taller 7
0.170	M16	Taller 6	0.56	M21	Taller 8	0.179	M14	Taller 6
0.171	M5	Taller 2	0.56	M22	Taller 8	0.199	M9	Taller 4
0.217	M8	Taller 4	0.56	M23	Taller 9	0.222	M7	Taller 4
0.269	M7	Taller 4	0.56	M24	Taller 9	0.333	M8	Taller 4
0.282	M6	Taller 3	0.56	M25	Taller 9	0.452	M30	Taller 10

Tabla 28. Porcentajes de azufre, manganeso y fósforo ordenados de menor a mayor

	Anális	sis de azufre	Análisis de Manganeso		
Taller	%S	Azufre dentro del rango optimo	%Mn	%Mn req.	Cumple con neutralizar
	0.168	No cumple	0.5	0.59	No cumple
Taller 1	0.167	No cumple	0.5	0.58	No cumple
	0.083	Cumple	0.53	0.44	Cumple
Taller 2	0.171	No cumple	0.4	0.59	No cumple
Taller 3	0.282	No cumple	0.46	0.78	No cumple
Taller 4	0.269	No cumple	0.33	0.76	No cumple
	0.217	No cumple	0.35	0.67	No cumple
	0.100	Cumple	0.43	0.47	No cumple
Taller 5	0.152	No cumple	0.46	0.56	No cumple
	0.150	No cumple	0.38	0.56	No cumple
Taller 6	0.154	No cumple	0.4	0.56	No cumple
	0.170	No cumple	0.43	0.59	No cumple
	0.170	No cumple	0.43	0.59	No cumple
Taller 7	0.145	No cumple	0.28	0.55	No cumple
Taller 8	0.126	No cumple	0.4	0.51	No cumple
	0.100	Cumple	0.56	0.47	Cumple
	0.090	Cumple	0.56	0.45	Cumple
	0.090	Cumple	0.56	0.45	Cumple
Tallar 0	0.116	Cumple	0.56	0.5	Cumple
Taller 9	0.116	Cumple	0.56	0.5	Cumple
	0.116	Cumple	0.56	0.5	Cumple
	0.117	Cumple	0.47	0.5	No cumple
	0.092	Cumple	0.44	0.46	No cumple
	0.092	Cumple	0.44	0.46	No cumple
	0.092	Cumple	0.44	0.46	No cumple
Taller 10	0.162	No cumple	0.26	0.58	No cumple

 Tabla 29.
 Análisis del azufre y manganeso de las muestras de los talleres participantes

En la tabla 30 se analiza si las muestras cumplen con la estandarización química, y, en el caso la cumplieran, se muestra que clase le correspondería de acuerdo a su composición química. En dicha tabla, las muestras de los talleres 1, 7 y 9 son los únicos que cumplen el estándar de la composición química, según la norma ASTM A159. Cabe recalcar que esta estandarización se da siempre y cuando el modo de fabricación sea el adecuado.

TallerMuestraClase según composición químicaTaller 1M1No cumpleTaller 1M2No cumpleM3Clase 40Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleTaller 5M11No cumpleM12No cumpleTaller 6M14No cumpleTaller 7M17Clase 30Taller 8M19No cumpleTaller 9M23Clase 40M20No cumpleM21No cumpleM20No cumpleM21No cumpleM22No cumpleM24Clase 40M25Clase 40M26No cumple	de los talleles participalites					
TallerMuestracomposición químicaTaller 1M1No cumpleTaller 1M2No cumpleM3Clase 40Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleTaller 5M11No cumpleM12No cumpleTaller 6M14No cumpleTaller 7M17Clase 30Taller 8M19No cumpleTaller 9M23Clase 40M24Clase 40M25Clase 40M26No cumple			Clase según			
químicaM1No cumpleTaller 1M2No cumpleM3Clase 40Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleTaller 4M7No cumpleM8No cumpleM9No cumpleTaller 5M11No cumpleTaller 6M14No cumpleTaller 7M15No cumpleTaller 8M19No cumpleTaller 9M20No cumpleTaller 9M23Clase 40M24Clase 40M25M26No cumple	Taller	Muestra	composición			
M1No cumpleTaller 1M2No cumpleM3Clase 40Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleTaller 4M7No cumpleM8No cumpleM9No cumpleTaller 5M11No cumpleTaller 6M14No cumpleM15No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M25Clase 40M26No cumple			química			
Taller 1M2No cumpleM3Clase 40Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleM8No cumpleM9No cumpleTaller 5M11No cumpleTaller 6M12No cumpleTaller 7M15No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M25Clase 40M26No cumple		M1	No cumple			
M3Clase 40Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleM8No cumpleM9No cumpleTaller 5M11No cumpleTaller 6M14No cumpleTaller 6M14No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM10No cumpleTaller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 1	M2	No cumple			
Taller 2M5No cumpleTaller 3M6No cumpleTaller 4M7No cumpleM8No cumpleM9No cumpleTaller 5M11No cumpleTaller 6M12No cumpleTaller 6M14No cumpleM15No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple		M3	Clase 40			
Taller 3M6No cumpleTaller 4M7No cumpleM8No cumpleM9No cumpleTaller 5M11No cumpleTaller 6M12No cumpleTaller 6M14No cumpleM15No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19M20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 2	M5	No cumple			
Taller 4M7No cumpleM8No cumpleM9No cumpleM9No cumpleTaller 5M11No cumpleM12No cumpleM15No cumpleM16No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 3	M6	No cumple			
M8No cumpleM9No cumpleTaller 5M11No cumpleM12No cumpleM14No cumpleM15No cumpleM16No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 4	M7	No cumple			
M9No cumpleTaller 5M11No cumpleM12No cumpleM14No cumpleTaller 6M14No cumpleM15No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple		M8	No cumple			
Taller 5M11No cumpleM12No cumpleM14No cumpleM15No cumpleM16No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19M20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple		M9	No cumple			
M12No cumpleTaller 6M14No cumpleM15No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 5	M11	No cumple			
Taller 6M14No cumpleM15No cumpleM16No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19M20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple		M12	No cumple			
M15No cumpleM16No cumpleTaller 7M17Clase 30Taller 8M19M20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 6	M14	No cumple			
M16No cumpleTaller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple		M15	No cumple			
Taller 7M17Clase 30Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple		M16	No cumple			
Taller 8M19No cumpleM20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 7	M17	Clase 30			
M20No cumpleM21No cumpleM22No cumpleM23Clase 40M24Clase 40M25Clase 40M26No cumple	Taller 8	M19	No cumple			
M21No cumpleM22No cumpleTaller 9M23Clase 40M24Clase 40M25Clase 40M26No cumple		M20	No cumple			
M22No cumpleTaller 9M23Clase 40M24Clase 40M25Clase 40M26No cumple		M21	No cumple			
Taller 9M23Clase 40M24Clase 40M25Clase 40M26No cumple		M22	No cumple			
M24Clase 40M25Clase 40M26No cumple	Taller 9	M23	Clase 40			
M25 Clase 40 M26 No cumple		M24	Clase 40			
M26 No cumple		M25	Clase 40			
		M26	No cumple			
M27 No cumple		M27	No cumple			
M28 No cumple		M28	No cumple			
M29 No cumple		M29	No cumple			
Taller 10M30No cumple	Taller 10	M30	No cumple			

 Tabla 30.
 Estandarización química de las muestras de los talleres participantes

5.1.2. Análisis metalográfico

5.1.2.1. Análisis de grafito

En el anexo A, se observa la norma UNE 36 117, cuyo objetivo es clasificar por su forma, distribución y tamaño el aspecto microscópico del grafito. De acuerdo a esta norma, la forma del grafito, se tipifica mediante los números I, II, III, IV y V, como se ilustra en la figura A1. En este caso las muestras corresponden al grafito I, que es el grafito laminar, por lo tanto, no discutiremos la forma sino la distribución y el tamaño. En cuanto a la distribución, el grafito se clasifica como tipo A, B, C, D y E, como se muestra en la figura A2. El último punto importante es su tamaño, que se designa con los números del 1 a 8, como se aprecia en la tabla A1.

La tabla 31, muestra la distribución y tamaño de grafito por zonas, debajo de esta información, entre paréntesis se encuentra el número de micrografía que se encuentra en el anexo C; así, por ejemplo: para la zona central de la muestra M1: A/B 2/3 (C1 y C2); quiere decir que presenta distribución tipos A y B, con tamaños 2 y 3, y las micrografías C1 y C2, del anexo C, corresponden a dicha zona.

Podemos afirmar que todas las muestras presentan heterogeneidad en cuanto a distribución y tamaño; encontrándose en general distribuciones tipos A y B; y en menor medida se observó tipo D, en la muestra M3 del taller 1, y tipo E, en la muestra M20 del taller 8 y en las muestras M25, M26, M28 y M29 del taller 9. En algunas de las muestras de los talleres 1, 3 y 4 se aprecian los tamaños de grafito más pequeños, N°5. Los más grandes, de tamaño N°2, se han producido en casi todas las muestras.

	Muestra	Z. Central	Z. Intermedia	Z. Periferia
	M1	A/B 2/3	A/B 2/3	A/B 3
	IVI I	(C1 y C2)	(C4 Y C5)	(C7 y C8)
Tallar 1	MO	A 2/3	A 3	B 3/4
Taller 1	IVI2	(C13 y C14)	(C16 y D17)	(C20 y C21)
	M2	B 3/4	B/D 4/5	B 4/5
	MI3	(C25 y C26)	(C28, C29 y C30)	(C32 y C33)
Tallar 2	M5	A/B 2/3	A/B 2/3	A/B 3/4
Taller 2	MD	(C43 y C44)	(C46 y C47)	(C49)
Tallar 2	MG	A/B 3/4	B 4/5	
Tallel 5	IVIO	(C55 y C56)	(C58 y C59)	
	M7	A/B 5	A/B 4/5	
Tallar 4	101 /	(C63 y C64)	(C66 y C67)	
Tallel 4	MQ	A/B 2/3	A/B 2/2	A/B 3
	IVIO	(C72 y C73)	A/D 2/3	(75 y C76)
	мо	A/B 3	A/B 3	A/B 3/4
	IVI 9	(C81 y C82)	(C84 y C85)	(C87 y C88)
	M11	A/B 2/3	A/B 2/3	A/B 3/4
Taller 5	10111	(C97 y C98)	(C100 y C101)	(C103 y C104)
	M12	A/B 2/3	A/B 2/3	A/B 3/4
	IVI I Z	(C108 y C109)	(C111 y C112)	(C114 y C115)
	M14	A/B 3	A/B 3/4	
Taller 6	10114	(C125 y C126)	(C128 y C129)	
Tallel 0	M15	A/B 2/3	A/B 2/3	A/B 3
	IVII J	(C134 y C135)	(C137 y C138)	(C140 y C141)
	M16	A/B 3	A/B 3	A/B 3/4
	WITO	(C145 y C146)	(C148 y C149)	(C151 y C152)
Taller 7	M17	A/B 2/3	A/B 3	A/B 3/4
	IVI 1 /	(C156 y C157)	(C159 y C160)	(C162 y C163)
	M10	A/B 2/3	A 2/3	B 4
	IVI I 9	(C173 y D174)	(C176 y D177)	(C179 y D180)
Taller 8	M20	A/E 2/3	A/B 3	A/B 3/4
	IVI20	(C184 y D185)	(C197 y D188)	(C190 y D191)
	M21	A/B 2/3	A/B 3	A/B 3/4
	11/12/1	(C195 y D196)	(C198 y D199)	(C201 y D202)
	M22	A/B 2/3	A/B 2/3	A/B 3
	10122	(C206 y D207)	(C209 y D210)	(C212 y D213)
Taller 9	M23	A/B 2/3	A/B 3	A/B 3

Tabla 31. Distribución y tamaño de grafito de las muestras

	Muestra	Z. Central	Z. Intermedia	Z. Periferia	
		(C217 y C218)	(C220 y C221)	(C223 y C224)	
	M24	A/B 3	A/B 3	B 4	
	11/12/4	(C228 y C229)	(C231 y C232)	(C234 y C235)	
	M25	A/B 2/3	A/E 3/4		
	1123	(C239 y C240)	(C241 y C242)		
	M26	A/B 2/3	A/E 3/4	A/B 2/3	
	IVIZO	(C246 y C247)	(C249 y C250)	(C254 y C255)	
	M27	A/B 2/3	B 3/4	A/B 3/4	
	11/12/	(C257 y C258)	(C260 y C261)	(C266 y C267)	
	M28	B/E 3/4	В/Е <i>1</i>	Λ/ P 2	
	1120	(C269 y C270)	D/L 4	A/D J	
	M29	B/E 3	A/B 3/4	A/B 2/3	
Taller 10	M30	B 2/3	B 2/3	B 3	
	14150	(C288 y D289)	(C291 y D292)	(C294 y D295)	

A continuación, veremos algunas figuras de las distribuciones de grafito encontradas. En la micrografía 1 se aprecia la zona intermedia de la muestra M2, la cual tiene una distribución tipo A con tamaño N°3. La micrografía 50 muestra la zona central de la muestra M6 con grafito tipo B con tamaño N° 4 y N°5, y por último la micrografía 5.3 muestra la zona central de la muestra M20, presentando grafito tipo A y tipo E, con tamaño N°2 y N°3.

Figura 49. Micrografía 1 - Zona central de la muestra M2. Estado de pulido (no atacado). Presenta láminas de grafito tipo A, con tamaño N° 3. 200X.
Fuente: Elaboración propia

Figura 50. Micrografía 2 - Zona central de la muestra M6 en estado de pulido (no atacado). Presenta láminas de grafito tipo B con tamaño N° 4 y N°5. 200X.
Fuente: Elaboración propia

Figura 51. Micrografía 3 - Zona central de la muestra M20. Estado de pulido (no atacado). Presenta láminas de grafito tipo A y tipo E, con tamaño N°2 y N°3. 200X.

5.1.2.2. Análisis de la matriz

En la tabla 33 se indica el tipo de matriz identificado en la zona central, intermedia y periferia de las probetas, y se señala también la presencia o no de esteadita; entre paréntesis se muestra el número de micrografía que corresponde a esa probeta y que se detalla en el anexo C.

Las muestras analizadas son mayoritariamente perlíticas. Existen tres tipos de perlita, como se observa en la tabla 32.

Tipo de perlita	Características
Perlita gruesa	Espaciamiento interlaminar So = $0,25 - 0,5$ mm.
-	Carga de rotura comprendida entre 80 – 90kg/mm ²
	Dureza aproximada: 200HB
Perlita fina	Espaciamiento interlaminar So = $0,10 - 0,25$ mm.
	Carga de rotura comprendida entre 90 – 140kg/mm ²
	Dureza aproximada: 300HB
Perlita muy fina	Espaciamiento interlaminar So < 0,10mm.
	Carga de rotura comprendida entre 140 - 175kg/mm ²
	Dureza aproximada: 400HB

Tabla 32. Tipos de perlita

Fuente: Pero-Sanz, 2006

Como se vio en el primer capítulo, la perlita es una mezcla interlaminar de Fe_3C y ferrita, resultado de la transformación eutectoide de la austenita y sus propiedades dependen del espaciado interlaminar, So.

La transformación de austenita a perlita queda mejor ilustrada el esquema de la figura 52. Este diagrama se conoce como curva Temperatura - Transformación – Tiempo (TTT) que indica a qué temperatura y en qué instante se inicia y concluye una transformación según la velocidad de enfriamiento que se emplee. La forma y posición de las curvas depende fundamentalmente de la composición química.

Figura 52. Esquema de la curva de transformación de austenita a perlita Fuente: Guerrero, 2009

Dependiendo de la velocidad de enfriamiento pueden aparecer tres tipos de perlita, tal como se muestra en la tabla 54. Si la velocidad de enfriamiento es relativamente elevada, se produce perlita muy fina, con espaciamiento interlaminar, So, menor a 0.1mm, muy dura y resistente; si el enfriamiento es lento, se produce perlita gruesa, con So comprendido entre 0.25mm y 0.5mm. La más blanda y menos resistente de todas, para velocidad de enfriamiento intermedio, es la perlita fina.

La heterogeneidad química, hace que las curvas TTT se desplacen en una misma pieza. Supongamos que en una zona de la pieza las curvas TTT estén a cierta distancia según sea la composición química de esa zona, y que, con una velocidad de enfriamiento, se produzca perlita fina; sin embargo, tenemos otra zona de la misma pieza con una composición química diferente a la primera zona que hace que las curvas TTT se hayan desplazado, así con la misma velocidad de enfriamiento en esta zona se producirá perlita gruesa, como se muestra en el esquema de la figura 53. Por lo tanto, podemos afirmar que en una misma pieza tendremos diferentes tipos de perlita debido a una heterogeneidad química.

Figura 53. Esquema de dos zonas de una misma pieza donde se produce perlita fina y gruesa.
Fuente: Elaboración propia

La matriz apta para aplicaciones estructurales es sin duda una matriz predominantemente perlítica. El tipo de perlita que es más resistente es la perlita muy fina que sería la ideal para que la fundición tenga una alta resistencia; sin embargo, una perlita gruesa también es aceptable; siempre y cuando la exigencia no sea muy grande. Para el caso de las probetas analizadas, observando las micrografías del anexo C, se ve claramente la heterogeneidad de la perlita, existiendo en una misma zona perlitas tanto gruesas como finas, la explicación a esto es un indicio de heterogeneidad química como se explicó anteriormente, lo cual trae como consecuencia una heterogeneidad mecánica que se discutirá más adelante. En el primer capítulo, se explicó la ferritización que ocurre al solidificar la fundición. Al haber ferrita, las propiedades mecánicas menguan, esto debido a que la ferrita es una fase muy blanda y poco resistente. En algunas muestras se ha observado ferritización, lo cual por lo mencionado anteriormente es perjudicial ya que disminuyen las propiedades mecánicas. Las micrografías 54 y 55 se muestran los típicos casos encontrados, donde hay una fase predominantemente perlítica y el otro donde hay ferritización.

Aunque la mayoría de las muestras analizadas son principalmente perlíticas, se aprecia la existencia de una fase llamada esteadita. Esta es una fase muy dura y frágil, cuya presencia mejora notablemente la colabilidad de la fundición y la resistencia al desgaste.

La literatura nos recomienda un porcentaje de fósforo como máximo de 0.1%. En el capítulo cuatro, se calculó que el porcentaje de fósforo que tiene la esteadita es del 9.86%. Si se multiplica el porcentaje de fósforo por 9.86 se tiene el porcentaje de volumen de la esteadita. Con 0.1% de fósforo se tiene 0.986% de volumen de la esteadita, redondeando resulta 1% de esteadita aproximadamente.

El porcentaje de volumen de la esteadita se presenta en la tabla 33, los cálculos correspondientes se muestran en el anexo D. En esta tabla hay dos columnas, una de ellas muestra los resultados por taller, donde vemos que al igual que en el caso del fósforo muestran repetibilidad sólo los talleres 5 y 9. La otra columna muestra el porcentaje de volumen de la esteadita ordenada de menor a mayor, en la que se observa que la mayoría presenta menos de 1% de esta fase; aunque algunas, como las muestras del taller 4 y la muestra del taller 10 (ver micrografía 8) presentan un contenido de esteadita más alto que el recomendado, lo cual traerá como consecuencia que la fundición se fragilice.

	Muestra	Z. Central	Z. Intermedia	Z. Periferia	
	M1	Predominantemente perlítica. Pequeñas áreas de esteadita (C3)	Predominantemente perlítica con presencia de esteadita menor cantidad que zona central (C6)	Predominantemente perlítica. Áreas con esteadita (C9)	
Taller 1 Taller 2 Taller 3 Taller 4	M2	Predominantemente perlítica. Áreas de esteadita (C15)	Predominantemente perlítica. Áreas de mayor tamaño de esteadita (C18)	Predominantemente perlítica con esteadita (C22)	
	M3	Predominantemente perlítica con esteadita (C27)	Predominantemente perlítica con esteadita (C31)	Predominantemente perlítica con esteadita (C34)	
Taller 2	M5	Predominantemente perlítica con áreas de esteadita (C45)	Predominantemente perlítica con áreas de esteadita (C48)	Predominantemente perlítica con algunas áreas de esteadita (C50)	
Taller 3	M6	Predominantemente perlítica y algunas áreas con esteadita. (C57)	Predominantemente perlítica y algunas áreas con esteadita. (C60)		
Taller 4	M7	Predominantemente perlítica. Pequeñas áreas de esteadita (C74)	Predominantemente perlítica con zonas ligeramente ferritizadas. Pequeñas áreas de esteadita		

Tabla 33. Matriz de las muestras

	M8	Predominantemente perlítica con zonas ligeramente ferritizadas. Pequeñas áreas de esteadita (C77)	Predominantemente perlítica. Pequeñas áreas de esteadita (C83)	Predominantemente perlítica. Abundantes áreas de esteadita (C86)
	M9	Predominantemente perlítica. Abundantes áreas de esteadita (C89)	Predominantemente perlítica. Pequeñas áreas de esteadita (C74)	Predominantemente perlítica con zonas ligeramente ferritizadas. Pequeñas áreas de esteadita
Taller 5	M11	Predominantemente perlítica. Pequeñas áreas de esteadita (C99)	Predominantemente perlítica.	Predominantemente perlítica. Pequeñas áreas de esteadita (C99)
Taner 5	M12	Predominantemente perlítica ligeramente ferritizada con esteadita. (C110)	Predominantemente perlítica ligeramente ferritizada con esteadita. (C113)	Predominantemente perlítica ligeramente ferritizada con esteadita. (C116)
	M14	Predominantemente perlítica. Pequeñas áreas de esteadita (C127)	Predominantemente perlítica con áreas de esteadita (C130)	
Taller 6	M15	Predominante perlítica. Pequeñas áreas de esteadita (C136)	Predominantemente perlítica con zonas ligeramente ferritizadas. Pequeñas áreas de esteadita (C139)	Predominantemente perlítica con zonas ligeramente ferritizadas. Pequeñas áreas de esteadita (C142)
	M16	Predominantemente perlítica. Pequeñas áreas de esteadita (C147)	Predominantemente perlítica. Abundantes áreas de esteadita (C150)	Predominantemente perlítica. Abundantes áreas de esteadita (C153)
Taller 7	M17	Predominantemente perlítica. Pequeñas áreas de esteadita (C158)	Predominantemente perlítica ligeramente ferritizada con esteadita. (C161)	Predominantemente perlítica ligeramente ferritizada con esteadita. (C164)
	M19	Predominantemente perlítica con zonas ferritizadas. Pequeñas áreas de esteadita (C175)	Predominantemente perlítica con zonas ferritizadas más esteadita. (C178)	Predominantemente perlítica con zonas ferritizadas y esteadita (C181)
Taller 8	M20	Predominantemente perlítica con zonas ferritizadas más esteadita (C186)	Predominantemente perlítica con zonas ferritizadas más esteadita. (C189)	Predominantemente perlítica con zonas ferritizadas más esteadita.(C192)
	M21	Predominantemente perlítica con zonas ferritizadas. Areas de esteadita (C197)	Predominantemente perlítica con zonas ferritizadas. Areas de esteadita (C200)	Predominantemente perlítica con zonas ferritizadas. Areas de esteadita (C203)
	M22	Predominantemente perlítica con zonas ferritizadas. Areas de esteadita (C208)	Predominantemente perlítica con zonas ferritizadas. Areas de esteadita (C211)	Predominantemente perlítica con zonas ferritizadas. Areas de esteadita (C214)
	M23	Predominantemente perlítica. Pequeñas áreas de esteadita. (C219)	Predominantemente perlítica con presencia de esteadita menor cantidad que zona central (C222)	Predominantemente perlítica. Áreas con esteadita (C225)
Taller 9	M24	Predominantemente perlítica con áreas de esteadita (C230)	Predominantemente perlítica con áreas de esteadita (C233)	Predominantemente perlítica con esteadita (C236)
	M25	Predominantemente perlítica y esteadita	Predominantemente perlítica con esteadita (C243)	
	M26	Predominantemente perlítica y áreas de esteadita (C248)	Predominantemente perlítica con áreas de esteadita (C251)	Predominantemente perlítica levemente ferritizada. Pequeñas áreas de esteadita (C256)
	M27	Predominantemente perlítica con esteadita en mayor cantidad que en la zona central (C259)	Predominantemente perlítica con esteadita (C262)	Predominantemente perlítica (gruesa) rodeada por pequeñas áreas de esteadita (C268)

	M28	Predominantemente perlítica con esteadita (C271)	Predominantemente perlítica con esteadita	Predominantemente perlítica con áreas con esteadita
	M29	Predominantemente perlítica con áreas de esteadita	Predominantemente perlítica con esteadita	Predominantemente perlítica. Pequeñas áreas de esteadita.
Taller 10	M30	Predominantemente perlítica, con grandes áreas de esteadita (C290)	Predominantemente perlítica. Presencia de grandes áreas de esteadita (C293)	Predominantemente perlítica fina con abundantes áreas de esteadita (C296)

Tabla 34. Esteadita de las muestras

% Esteadita por taller			% Esteadita de menor a mayor			
Taller	Muestra	%Esteadita	%Esteadita	Muestra	Taller	
	M1	0.798	0.334	M20	Taller 8	
Taller 1	M2	0.751	0.546	M21	Taller 8	
	M3	0.932	0.546	M22	Taller 8	
Taller 2	M5	1.055	0.706	M19	Taller 8	
Taller 3	M6	0.902	0.751	M2	Taller 1	
Taller 4	M7	2.185	0.756	M15	Taller 6	
	M8	3.250	0.756	M16	Taller 6	
	M9	1.965	0.798	M1	Taller 1	
Taller 5	M11	1.149	0.852	M24	Taller 9	
	M12	1.158	0.902	M6	Taller 3	
Taller 6	M14	1.769	0.932	M3	Taller 1	
	M15	0.756	0.941	M27	Taller 9	
	M16	0.756	0.941	M28	Taller 9	
Taller 7	M17	1.394	0.941	M29	Taller 9	
Taller 8	M19	0.706	1.013	M23	Taller 9	
	M20	0.334	1.046	M25	Taller 9	
	M21	0.546	1.055	M5	Taller 2	
	M22	0.546	1.060	M26	Taller 9	
Tallar 0	M23	1.013	1.149	M11	Taller 5	
Tallel 9	M24	0.852	1.158	M12	Taller 5	
	M25	1.046	1.394	M17	Taller 7	
	M26	1.060	1.769	M14	Taller 6	
	M27	0.941	1.965	M9	Taller 4	
	M28	0.941	2.185	M7	Taller 4	
	M29	0.941	3.250	M8	Taller 4	
Taller 10	M30	4.454	4.454	M30	Taller 10	

Fuente: Elaboración propia

Figura 54. Micrografía 4 - Zona central de la muestra M3 con matriz perlítica (zonas oscuras), predominantemente tiene perlita fina, con áreas de esteadita. Atacada con 3% nital. 548.33X. Fuente: Elaboración propia

Figura 55. Micrografía 5. - Zona intermedia de la muestra M9. Matriz perlítica (mayoritariamente perlita gruesa) rodeado por zonas ferritizadas con muy poca esteadita. Atacada con 3% nital. 548.33X Fuente: Elaboración propia

Figura 56. Zona intermedia de la muestra M30. Matriz perlítica con grandes zonas de esteadita. Atacada con 3% nital. 548.33X Fuente: Elaboración propia

5.1.2.3. Análisis de defectos

En este apartado haremos un análisis de los defectos encontrados, solamente analizaremos los defectos internos. Este tipo defectos, son los más dañinos, porque, al ser internos, no aparecen hasta que se procede al mecanizado o lo que es aún peor, cuando la pieza ya está aplicada a su trabajo, cede a las condiciones de trabajo externas y se rompe. En la tabla 35 se detallan los defectos encontrados en las muestras analizadas, con sus respectivas micrografías referenciadas, que se pueden apreciar en el anexo C.

Las porosidades, las microporosidades, los pequeños agujeros, las burbujas y las sopladuras tienen aspecto análogo. Se tratan de burbujas esféricas o aplanadas de superficie lisa, provocadas por gases disueltos en la fundición que escapan en el acto de la solidificación, o por gases o vapores que se forman en el molde, o al contacto de éste con la fundición, y que, a causa de la escasa permeabilidad del molde, tratan de encontrar un paso a través del metal líquido, donde quedan aprisionadas en el acto de la solidificación.

La composición de la fundición causa este tipo de fenómenos, principalmente por causa del azufre ya que reduce la fluidez y suele causar cavidades (aire atrapado). Se explica de la siguiente manera: cuando la temperatura del metal fundido cae, se forman sulfuros de manganeso y se separan del metal fundido. Estos flotan sobre la superficie, donde se mezclan con la escoria de la cuchara, creando una escoria de muy alta fluidez, la cual entra en las cavidades del molde, reaccionando con el grafito precipitado durante la reacción eutéctica, lo cual da como resultado la evolución de monóxido de carbono y la formación de este tipo de defectos. Tenemos que recalcar que esto ocurrirá si es que el manganeso no logra neutralizar el azufre y/o éste se encuentra en elevados contenidos.

Como se vio en las figuras 27 y 36 correspondientes a las muestras M5 del taller 2 y M23 del taller 9, se muestran claramente que ha habido sopladuras que se encontraron al mecanizar las muestras. En todas las muestras se encontró sulfuros de manganeso y microporos, como se puede apreciar en las micrografías 9 y 10 respectivamente. De la composición química analizada, el azufre en la mayoría de las muestras, está por encima del rango recomendado. En cuanto al manganeso los talleres 1, 8 y 9 fueron los únicos donde en algunas de sus muestras se encontró manganeso suficiente para neutralizar el azufre. En estos casos, por su composición química, no debería haber este tipo de defectos, pero si los hay, lo que quiere decir que se han producido por causas que no están relacionadas con su composición química.

Los rechupes son cavidades con paredes recortadas, que se producen por la disminución de volumen o contracción de la fundición durante la solidificación. El rechupe comprende tanto la contracción macroscópica, o macrorrechupe, como la contracción microscópica o microrrechupe. Frecuentemente aparece en los espacios interdendríticos rellenos por líquido no conectado con el resto del metal líquido, cuando los dendritos están muy desarrollados. Al solidificar (y contraerse, por tanto) estas pequeñas porciones líquidas, no conectadas, forman porosidades internas: esto es el microrrechupe.

La aparición de rechupes puede depender de un diseño inadecuado de la pieza, de una mala práctica de colada cuando los bebederos y cargadores están mal dispuestos o son demasiado pequeños o están mal unidos a la pieza, etc. El azufre, en este caso, también provoca este tipo de defectos ya que se opone a la grafitización y reduce la fluidez de la fundición.

En casi todas las muestras se encontró microrrechupes. Cabe recalcar que la distinción entre microporos y microrrechupes no es sencilla, ya que ambas tienen apariencias similares, aunque claramente su aparición se debe a causas diferentes. Lo que se puede decir es que los "huecos pequeños" que aparecen en una sección bien alimentada deben ser causados por gases y por tanto deben ser microporos.

Las inclusiones de escoria se producen cuando la escoria es arrastrada por el metal durante la colada, y permanecen aprisionada en el mismo metal seguidamente a la solidificación de la pieza. Las posibles causas son la eliminación inadecuada de escoria y acumulación en la cuchara, y un exceso de turbulencia en el vertido.

Se encontró este tipo de defectos en las muestras M1 del taller 1, M17 del taller 6, y M27 del taller 9. En la micrografía 11 se muestra este tipo de defecto.

1 uolu 50.		
Taller	Muestra	Descripción de defectos encontrados
		Muchos microporos (conc. En z. central) (C10) y partículas de gran
	M1	tamaño de sulfuro de manganeso. (C11). En periferia una inclusión de
Tallar 1		escoria. (C12).
Taller I	M2	Microporos (C23) y sulfuros de manganeso (C24)
	M2	Microporos (C35) y sulfuros de manganeso (C36). Un rechupe en zona
	IVI3	central. (C37)
Taller 2	M5	Un microrrechupe, pequeños microporos a lo largo de toda la sección
Tallel 2	IVIJ	(C53). Gran cantidad de sulfuros de manganeso (C54)
Taller 3	M6	Algunos microporos y microrrechupes. (C61) Abundantes partículas de
Tallel 3	IVIO	gran tamaño de sulfuro de manganeso (C62).
	М7	Muchos microporos (C69), partículas de gran tamaño de sulfuro de
Tallar 4	111/	manganeso (C70). En periferia un poro debido a la reacción del CO.
Tallel 4	Mg	Defectos del tipo cavidades de contracción y sulfuros de manganeso en
	IVIO	toda la sección de la pieza. (C78)
	MO	Microporos (C90) y sulfuros de manganeso en toda la sección de la pieza
	101.9	(C91)
	M11	Muchos microporos (pref. Zona central) (C106) y partículas de gran
Taller 5	10111	tamaño de sulfuro de manganeso (C107)
	M12	Muchos microporos (pref. Zona central) (C117) y partículas de gran
	10112	tamaño de sulfuro de manganeso (C118)
		Muchos microporos (C131), partículas de gran tamaño de sulfuro de
	M14	manganeso (C132). En periferia un poro debido a la reacción del CO.
Taller 6		(C133)
	M15	Defectos del tipo cavidades de contracción (C143) y sulfuros de
	IVII 5	manganeso en toda la sección de la pieza (C144).
	M16	Defectos del tipo microporos (C154) y sulfuros de manganeso en toda la
	iiiio	sección de la pieza (C155).
		Muchos microporos, cavidad de contracción con escoria en centro (C165)
Taller 7	M17	y partículas de gran tamaño de sulfuro de manganeso en toda la sección
		(C166)
Taller 8	M19	Muchos microporos (C182) y partículas de sulfuro de manganeso (C183)
	M20	Muchos microporos (C193) y partículas de sulfuro de manganeso (C194)
	M21	Muchos microporos (C204) y partículas de sulfuro de manganeso (C205)
	M22	Muchos microporos (C215) y partículas de sulfuro de manganeso (C216)
	M23	Muchos microporos (C226) y partículas de sulfuro de manganeso (C227)
Tallar 0	M24	Muchos microporos (C237) y sulfuros de manganeso (C238)
Tallel 9	M25	Muchos microporos (C244) y sulfuros de manganeso (C245)
	M26	Microporos (C252) y sulfuros de manganeso (muy poco) (C253)
	M27	Microporos toda la pieza. (C263) Gran cantidad de sulfuros de manganeso.
	1 V1 ∠ /	(C264) Una inclusión de escoria en periferia (C265)
	M28	Muchos microporos /cav. contracc.). Gran cantidad sulfuros de
	10120	manganeso.
	M29	Muchos microporos /cav. contracc.). Gran cantidad sulfuros de
	10127	manganeso.
Taller 10	M30	Muchos microporos y microrrechupes (C297). Gran cantidad de sulfuros
	10130	de manganeso (C298)

Tabla 35. Defectos de las muestras

Fuente: Elaboración propia

Figura 57. Micrografía 6 - Inclusiones de sulfuros de manganeso (áreas grises oscuras, redondeado) en toda la muestra M1. Estado de pulido (no atacado). 500X. Fuente: Elaboración propia

Figura 58. Micrografía 7 - Microporos del tipo cavidades de contracción, preferentemente en zona central de la muestra M1 en estado de pulido (no atacado). 137.08X
 Fuente: Elaboración propia

Figura 59. Micrografía 8 - Hierro gris en estado de colada que contiene una inclusión de escoria en la periferia (áreas oscuras grandes) correspondiente a la muestra M1. Estado de pulido (no atacado). 137.08X.
Fuente: Elaboración propia

5.1.3. Caracterización mecánica

La propiedad más importante y en la que nos basaremos para la discusión de la calidad desde el punto de vista mecánico, será la resistencia a la tracción de todas las muestras. En la tabla 36 se muestra la resistencia a la tracción medida de todas las muestras en las que pudo hacerse.

En base a dicha tabla, de todas las muestras ensayadas, siete no pudieron ser clasificadas porque su resistencia a la tracción estaba por debajo de la clase 20, que es la clase más baja según la norma ASTM A48.

La clase más alta que se registró fue la clase 30 de la muestra M26, la cual pertenece al taller 9, el cual incluso, fue el taller donde hubo mayor cantidad de muestras que se pudieron clasificar. La clase más baja que se registró fue la clase 20 de la muestra M21 la cual pertenece al taller 8. La clase 25 fue la clase que más se repitió.

Los talleres en donde en algunas de sus muestras se pudieron estandarizar por resistencia a la tracción fueron cuatro de los diez talleres, los cuales fueron los talleres 1, 4, 8 y 9.

Muestra	Carga última (kg)	Área (mm ²)	Resistencia a la tracción	Resistencia a la tracción		
	(8)	()	(MPa)	(ksi)		
Ml	2185	126.68	169.21	24.54		
M2		No se	realizó			
M3	2510	130.70	188.38	27.32		
M5		No se	realizó			
M6		No se	realizó			
M7		No se	realizó			
M8		No se	realizó			
M9	2470	125.68	192.78	27.96		
M11		No se	realizó			
M12	1490	130.70	111.83	16.22		
M14	No se realizó					
M15	No se realizó					
M16		No se	realizó			
M17	1220	126.67	94.50	13.70		
M19	1715	126.68	132.81	19.26		
M20	1700	132.73	125.66	18.22		
M21	1840	125.68	143.61	20.83		
M22	1700	126.68	131.64	19.09		
M23		No se	realizó			
M24	2513	126.68	194.61	28.23		
M25	1410	126.68	109.20	15.84		
M26	2905	128.00	222.64	32.29		
M27	2210	128.00	169.38	24.57		
M28	2325	128.00	178.20	25.85		
M29	2450	128.00	187.77	27.23		
M30	1690	125.66	124.68	18.08		

Tabla 36. Resistencia a la tracción de las muestras

En la tabla 37 se presentan los valores de dureza de las muestras analizadas. Esta tabla contiene la dureza promedio, la dureza máxima y la dureza mínima, y la diferencia entre las durezas citadas anteriormente. La tabla muestra valores de dureza bastante heterogéneos, una razón para esta heterogeneidad son las características microestructurales de la matriz perlítica obtenida.

Como se indica en el análisis de la matriz, aunque las muestras fueron predominantemente perlíticas, presentan zonas de perlita fina y zonas de perlita gruesa, cuyas durezas son bastante diferentes 200HB para la perlita gruesa y 300HB para la perlita fina, como se puede constatar en la tabla 37. En la tabla 37, ningún valor llega a 300HB; sin embargo, en nuestro análisis si se evidenció una matriz fina, lo cual quiere decir que tanto el grafito como los defectos presentes han influido no solo en este caso sino en todas las medidas realizadas.

Muestra	Dureza prom.	Dureza	Dureza	Ptos. Difer. entre
	(HB)	máx.(HB)/Ubic.	min.(HB)/Ubic.	máx.y mín.(HB)
M1	170	192/Periferia	143/Centro	49
M2	179	197/Indistinto	156/ Indistinto	41
M3	200	207/Periferia	193/Centro	14
M5	183	205/Periferia	170/ Indistinto	35
M6	203	208/Periferia	193/Centro	15
M7	224	236/Periferia	217/Indistinto	19
M8	222	236/Periferia	217/Indistinto	19
M9	187	197/Periferia	154/Centro	43
M11	182	207/Periferia	163/Centro	44
M12	157	173/Periferia	145/Centro	28
M14	246	249/Periferia	238/Periferia	11
M15	145	147/Intermedia	140/Periferia	07
M16	187	205/Periferia	173/Centro	32
M17	156	170/Periferia	144/Centro	26
M19	170	182/Periferia	154/Centro	28
M20	157	170/Intermedio	149/Intermedio	21
M21	145	151/Periferia	140/Periferia	20
M22	164	179/periferia	149/Intermedio	30
M23	193	205/Intermedio	176/Periferia	29
M24	186	193/Intermedio	170/Periferia	23
M25	182	189/Intermedio	176/Periferia	13
M26	198	205/Periferia	189/Centro	16
M27	163	167/Periferia	155/Centro	12
M28	202	209/Periferia	197/Centro	12
M29	203	213/Periferia	189/Centro	24
M30	183	197/Periferia	167/Centro	30

Tabla 37.	Ensav	o de	dureza	de	las	muestras
	/					

5.1.4. Discusión del cumplimiento de estándares

En la tabla 38 se muestra un cuadro resumen, donde para propósito de nuestro análisis se eligieron cuatro criterios para determinar si las muestras entregadas por los talleres participantes cumplen o no con los estándares exigidos.

Como se mencionó en la discusión desde el punto de vista químico, las muestras del taller 1, taller 7 y taller 9 cumplieron el estándar de la composición química, clasificándose la muestra M3 en clase 40, la M17 en clase 30 y la M23, M24 y M25 en clase 40. Esto quiere decir que, de acuerdo a su composición, haciendo el ensayo de tracción, las probetas deberían alcanzar sus clases correspondientes, sin embargo, esto no fue así. La clasificación según la resistencia a la tracción de las muestras citadas anteriormente, no guarda relación con la clasificación según su composición química. Las clases que se obtuvieron fueron menores que las que mandaba la composición química.

Por lo dicho anteriormente, podemos afirmar que ningún taller logró estandarizar sus muestras, ya que no hay una coherencia entre los criterios químicos y mecánicos.

Otro aspecto importante es el análisis del azufre y manganeso. Como se dijo en el análisis químico, sólo las muestras de cuatro talleres (1, 4, 8 y 9) lograron producir muestras con contenido de azufre dentro del permitido. Los talleres 1, 8 y 9, son los únicos en que tienen alguna muestra, donde el manganeso logra neutralizar el contenido de azufre.

Este análisis es importante ya que está íntimamente ligado a los defectos encontrados en las piezas. Como se mencionó anteriormente el azufre, cuando no está completamente balanceado y fuera del rango permitido, produce en las piezas burbujas de aire atrapado, ya que la colabilidad baja produce el defecto llamado microporosidad.

Taller	Entrega	Muestra	Clase según comp. química	Clase según resis. a la tracción	Azufre dentro del rango óptimo	Manganeso cumple con neutralizar el azufre
	1a	M1	No cumple	\approx Clase 25	No cumple	No cumple
Taller 1	1	M2	No cumple	_	No cumple	No cumple
	2 ^a	M3	Clase 40	Clase 25	Cumple	Cumple
Taller 2	Única	M5	No cumple	_	No cumple	No cumple
Taller 3	Única	M6	No cumple	_	No cumple	No cumple
Taller 4	1a	M7 No cumple -		_	No cumple	No cumple
	1	M8	No cumple	_	No cumple	No cumple
	2 ^a	M9	No cumple	umple Clase 25 Cump		No cumple
Tallar 5	1 ^a	M11	No cumple	_	No cumple	No cumple
Tallel 5	2^a M12 N		No cumple	No cumple Menor a Clase 20 No cumple		No cumple
Taller 6		M14	No cumple	_	No cumple	No cumple
	Única	M15	No cumple	_	No cumple	No cumple
		M16	No cumple	_	No cumple	No cumple
Taller 7	Única	M17	Clase 30	No cumple Menor a Clase 20	No cumple	No cumple
Taller 8	1 ^a	M19	No cumple	Clase 20	No cumple	No cumple
	2 ^a	M20	No cumple	Clase 20	Cumple	Cumple
	2a	M21	No cumple	Clase 20	Cumple	Cumple
	5	M22	No cumple	Clase 20	Cumple	Cumple
T 11 0		M23	Clase 40	_	Cumple	Cumple
Taller 9	1a	M24	Clase 40	Clase 25	Cumple	Cumple
	1	M25	Clase 40	No cumple Menor a Clase 20	Cumple	Cumple
	2 ^a	M26	No cumple	Clase 30	Cumple	No cumple
		M27	No cumple	\approx Clase 25	Cumple	No cumple
	3 ^a	M28	No cumple	Clase 25	Cumple	No cumple
		M29	No cumple	Clase 25	Cumple	No cumple
Taller 10	Única	M30	No cumple	No cumple Menor a Clase 20	No cumple	No cumple

 Tabla 38.
 Resumen de los criterios más importantes para la evaluación de la calidad de las muestras analizadas

Fuente: Elaboración propia

En la tabla 39 se presentan los resultados de la evaluación de la calidad de las muestras en porcentajes, de los aspectos más importantes de los análisis. Para los cálculos realizados se ha considerado que las muestras de una misma pieza y de una misma colada, se contarán como si fuera una única muestra, ya que tienen los mismos resultados, así de las 26 muestras, solamente se contarán 20, ya que las muestras M15 y M16 del taller 6 pertenecen a una misma pieza, mientras que las muestras M21 y M22 del taller 8, las muestras M23, M24 y M25 del taller 9 y las muestras M27, M28 y M28 del mismo taller son de una misma colada.

Por ejemplo, para calcular el porcentaje de las muestras, cuya composición química coincide con la especificada por alguna clase, se contabilizaron tres (M3, M17 y una del grupo M23, M24 y M25 pues éstas son de la misma colada), se dividió entre 20 y se multiplicó por 100, dando un resultado del 15%, esto quiere decir que de todas las muestras analizadas sólo el 15% cumplió con el estándar químico. El mismo resultado se repite para todos los aspectos de las primeras columnas de la tabla 39.

El objetivo de esta tabla es compararla con la tabla 42 de la materia prima, y encontrar una relación con la materia prima analizada, cuyo objetivo de esta tesis es encontrar dicha relación.

	l contraj co
Análisis	Porcentaje
Composición química coincidente con alguna clase	15%
Clase 30, según composición química	10%
Clase 40, según composición química	5%
Azufre dentro del rango óptimo	35%
Manganeso cumple con neutralizar el azufre	20%
Evente: Eleberación propio	

Tabla 39. Evaluación de la calidad de las muestras en porcentajes

Fuente: Elaboración propia

5.2. Resultados y discusión de la chatarra

En todos los talleres visitados, la materia prima usada es, fundamentalmente, chatarra de fundición, en menor medida, chatarra de acero y como combustible suele usarse, carbón mineral.

Lo más importante de la caracterización de las chatarras es la composición química, ya que, al fundirse el material cargado en el horno, las características microestructurales desaparecen y el líquido adopta la composición química resultante de los diversos materiales que se usaron como materia prima.

Se realizó también la caracterización metalográfica y mecánica con el fin de determinar la calidad de la chatarra usada y verificar si cumple o no con los estándares para fundiciones grises.

En los países industrializados, donde las piezas se fabrican con procedimientos estándares, se sabe con certeza que la chatarra derivada de piezas ya en desuso, tienen una calidad estandarizada que van a transmitir a la nueva fundición si se sigue el procedimiento adecuado, y, por tanto, no es necesario analizarlas individualmente; como ese no es el escenario en el norte del Perú, aquí ha sido necesario analizar un cierto número de piezas de chatarra para saber con qué material se cuenta. Por tanto, se muestran y discuten los resultados del análisis químico, análisis metalográfico y medidas de dureza.

5.2.1. Análisis químico

Para obtener la composición química, se siguió el mismo procedimiento aplicado en las muestras de talleres, los resultados se presentan a continuación en la tabla 40.

Chatarras	Desig.	%С	%S	%Si	%Mn	%P	Ceq
Carcaza bomba delgada	C1	3.571	0.145	2.28	0.48	0.249	4.41
Carcaza bomba gruesa	C2	3.281	0.189	2.13	0.65	0.020	4.00
Volante de Motor 1	C3	3.314	0.045	2.22	0.92	0.009	4.06
Volante de Motor 2	C4	3.251	0.106	1.77	0.71	0.010	3.84
Bancada de motor	C5	3.276	0.235	1.46	0.54	0.113	3.80
Barrita cilíndrica	C6	3.340	0.091	1.37	0.77	0.074	3.82
Cilindro de metal	C7	3.160	0.040	1.65	0.75	0.030	3.72
Válvula	C8	3.280	0.080	2.16	0.60	0.028	4.01
Disco	C9	3.450	0.080	2.27	0.55	0.015	4.21
Motor	C10	3.420	0.040	2.40	0.24	0.017	4.23
Trozo	C11	3.400	0.060	2.17	0.61	0.017	4.13

Tabla 40. Composición química de las chatarras analizadas

Fuente: Elaboración propia

El cálculo del porcentaje del carbono equivalente muestra que diez de las once muestras, son fundiciones hipoeutécticas, esto quiere decir que la mayoría de la chatarra fueron piezas de fundición que son más recomendadas para aplicaciones estructurales. La muestra C1, es una fundición hipereutéctica, teniendo buenas propiedades térmicas.

En la tabla 14 del capítulo 3, observamos que las clases mayores a 25, que son a las que se quiere llegar, aceptan como máximo 3.4% de carbono. En este caso, vemos que 7 de las 10 muestras cumplen esta condición. Respecto del silicio, 6 de las 10 muestras, cumplen el porcentaje mínimo para clases mayores a 25, es decir presentan más de 1.9% de silicio.

En la tabla 41 se muestra la clasificación según la composición química, así como también el análisis de azufre y manganeso de las chatarras. En cuanto al azufre, se analiza si cumple con el rango recomendado, y en cuanto al manganeso si es que éste cumple con neutralizar el contenido de azufre. En dicha tabla, tres de las once muestras presentan azufre por encima del rango, las demás, en general, tienen un nivel de azufre muy bajo, teniendo los menores contenidos las muestras C3, C7 y C10. Casi todas las muestras tienen suficiente manganeso para neutralizar el azufre presente; a excepción de las muestras C1 y C5. Por último, las muestras C1 y C5, presentan exceso en el contenido de fósforo, pero casi todo el resto de muestras lo tienen en niveles adecuados.

La tabla 41, muestra sólo cuatro muestras de chatarra que cumplen con el estándar de la composición química.

cilatallas						
Muestra	Clase según	Azufre dentro del	Manganeso cumple con			
	química	rango óptimo	neutralızar el azufre			
C1	No cumple	No cumple	No cumple			
C2	Clase 30	No cumple	Cumple			
C3	No cumple	Cumple	Cumple			
C4	No cumple	Cumple	Cumple			
C5	No cumple	No cumple	No cumple			
C6	No cumple	Cumple	Cumple			
C7	No cumple	Cumple	Cumple			
C8	Clase 30	Cumple	Cumple			
С9	No cumple	Cumple	Cumple			
C10	Clase 20	Cumple	Cumple			
C11	No cumple	Cumple	Cumple			

 Tabla 41.
 Resumen de los criterios más importantes para la evaluación de las chatarras

En la tabla 42 se presentan los resultados de la evaluación de la calidad de las chatarras en porcentajes. Por ejemplo, para calcular el porcentaje de las muestras que cumplieron con estándar químico, se contabilizaron 3, se dividió entre 11 y se multiplicó por 100, dando un resultado del 27.3%, esto quiere decir que de todas las chatarras analizadas sólo el 27.3% cumplió con el estándar químico. El mismo resultado se repite para todas las primeras columnas de la tabla 42.

Análisis	Porcentaje
Cumplieron estándar químico	27.3%
Clase 20, según comp. química	9.1%
Clase 30, según comp. química	18.2%
Azufre dentro del rango óptimo	72.7%
Manganeso cumple con neutralizar el azufre	81.8%

Tabla 42. Evaluación de la calidad de las muestras en porcentajes

Fuente: Elaboración propia

5.2.2. Análisis metalográfico

Al igual que las muestras de los talleres, se siguió el mismo procedimiento para analizar la microestructura de las chatarras, cuyos resultados son los siguientes:

Muestra	Grafito	Matriz	Defectos
C1	B 4	Predominantemente perlítica	Microrrechupes,
CI	(D1 y D2)	ferritizada + esteadita (D3)	microporos (D4)
C2	B/E 4/5	Predominantemente perlítica	Microporos, sulfuros
C2	(D5, D6 y D7)	+ esteadita (D8)	de Mn (D9)
C2	A/E 3/4	Predominantemente perlítica	Sulfuro de Mn (D14)
CS	(D11 y D12)	ferritizada + esteadita(D13)	
C4	A/E 4	Predominantemente perlítica	Microrrechupes
C4	(D15 y D16)	ferritizada + esteadita (D17)	(D18)
C5	B/E 3/4	Predominantemente perlítica	Microporos, sulfuros
05	(D19 y D20)	ferritizada + esteadita(D21)	de Mn (D22 y D23)
	B/E 4/5	Predominantemente perlítica	Microporos, sulfuros
C6	$(D24 \times D25)$	+ ledeburita + esteadita	de Mn (D27 y D28)
	(D24 y D23)	(D26)	
C7	A/B 3/4	Predominantemente perlítica	Microporos, sulfuros
07	(D29 y D30)	+ esteadita (D31)	de Mn (D32 y D33)
C8	A/E 2/3/4	Predominantemente perlítica	Microporos, sulfuros
0	(D34 y D35)	+ esteadita (D36)	de Mn (D37 y D38)
C0	A/E 2/3	Predominantemente perlítica	Microporos, sulfuros
0	(D39, D40 y D41)	+ esteadita (D42)	de Mn (D43 y D44)
C10	B/E 3/4	Predominantemente perlítica	Microporos, sulfuros
010	(D45 y D46)	ferritizada + esteadita (D47)	de Mn (D48 y D49)
C11	A/E 2/3	Predominantemente perlítica	Microporos, sulfuros
CII	(D50 y D51)	+ esteadita (D52)	de Mn (D53 y D54)

Tabla 43. Análisis metalográfico de las chatarras analizadas

Al igual que en las muestras de los talleres, las chatarras tienen morfología grafito I, que es el grafito laminar, por lo que discutiremos su distribución y el tamaño. La tabla 43, muestra la distribución y tamaño de grafito que se encontró en toda la superficie analizada, entre paréntesis se encuentra el número de micrografía que se encuentra en el anexo D; así, por ejemplo: Para la muestra C1: B 4 (D1 y D2); quiere decir que presenta distribución tipo B, con tamaño 4, y las micrografías D1 y D2, del anexo D, corresponden a dicha muestra. También esta tabla contiene información del tipo de matriz y de los defectos encontrados.

Podemos afirmar que todas las muestras presentan heterogeneidad en cuanto a distribución y tamaño; y a diferencia del caso de las muestras analizadas, predomina la distribución tipo E; seguida por las distribuciones tipo A y B. Las muestras C7 y C11 son las únicas que no presentan distribución tipo E. Sólo en dos muestras, C2 y C6 se encontró el grafito más pequeño, N°5. Sólo en tres muestras se encontró el más grande, N°2, las muestras fueron la C8, C9 y C11.

Comparando al análisis de grafito de las chatarras con el de las muestras, podemos afirmar que en cuanto a la distribución se ve una diferencia marcada, mientras en las muestras predominan las distribuciones A y B, en el caso de las chatarras predomina la distribución tipo E. En cuanto al tamaño de los grafitos, vemos la heterogeneidad es similar, con tamaños de grafitos similares, no existiendo una diferencia marcada.

En la tabla 43, la matriz predominantemente perlítica es la que se encontró en todas las muestras, y en algunas de ellas se pudo apreciar ferrita, existiendo una ferritización en el proceso de enfriamiento de algunas muestras. En general las matrices encontradas son similares a las de las muestras, no existiendo una diferencia marcada. Para el caso de nuestras probetas, observando las micrografías del anexo D, se ve claramente la heterogeneidad de la perlita, existiendo en una misma zona perlitas tanto gruesas como finas, como se presentó en el caso de las muestras de los talleres analizados. Un caso particular ocurrió con la muestra C6, como se aprecia en la micrografía 9, apareció la fase ledeburita, lo cual quiere decir que esta muestra en particular tiene tendencia al blanqueo.

En cuanto a la fase esteadita, los porcentajes se muestran en la tabla 66. De todas las muestras, las muestras C1, C7 y C8 son las que tienen el más alto contenido de fósforo y por tanto tienen el contenido de esteadita más alto. En la micrografía 10 se aprecia el alto contenido de esteadita de la chatarra C1.

Comparando con estos resultados con los encontrados en las muestras de los talleres, vemos claramente que, aparte de las tres muestras encontradas con alta esteadita, los contenidos de esteadita son muy inferiores a los encontrados en las muestras de los talleres. Y en cuanto al contenido de esteadita más alto se encontró en la muestra M30 del taller 10, más no en las chatarras analizadas.

Figura 60. Micrografía 9 - Fundición gris con ledeburita, matriz perlítica con pequeñas áreas de esteadita. Atacado con 3% de nital. 548.33X.
Fuente: Elaboración propia

Figura 61. Micrografía 10 - Matriz perlítica ferritizada con grandes zonas de esteadita de la muestra C1. Atacada con 3% nital. 548.33X. Fuente: Elaboración propia

Chatarra	% Esteadita
C1	2.454
C2	0.197
C3	0.087
C4	0.094
C5	1.119
C6	0.732
C7	0.295
C8	0.277
C9	0.150
C10	0.170
C11	0.167

Tabla 44. Esteadita en la chatarra

En cuanto a los defectos de fusión, en todas las muestras aparecen microporos y en menor medida sulfuros de manganeso. En general, de las once muestras, sólo la muestra C7 posee las características metalográficas adecuadas para una buena fundición. En resumen, el análisis micrográfico de las muestras revela variaciones entre las mismas, en cuanto a características del grafito y tipo de matriz.

5.2.3. Determinación de dureza

En la tabla 45 se presentan los valores de dureza de las chatarras. Esta tabla contiene la dureza promedio y la diferencia entre las durezas máxima y mínima encontradas. Viendo la tabla podemos decir que en general la dureza es heterogénea, los resultados son muy variados, al igual que las muestras de los talleres analizadas.

Muestra	Dureza prom.	Ptos. Difer. entre
	(НВ)	max.y min.(HB)
C1	146	8
C2	236	21
C3	157	36
C4	179	29
C5	171	14
C6	253	17
C7	167	20
C8	171	38
C9	186	50
C10	186	12
C11	203	12

 Tabla 45.
 Resumen de las medidas de dureza realizadas a cada muestra

Fuente: Elaboración propia

Como se indica en el análisis de la matriz, aunque las muestras fueron predominantemente perlíticas, presentan zonas de perlita fina y zonas de perlita gruesa, cuyas durezas son bastante diferentes y estas quedan reflejadas en la tabla 45.

5.3. Caracterización del carbón

En la tabla 46 se presentan el análisis químico y propiedades de combustión dos carbones pertenecientes a los talleres 2 y 8, tal como se especificó en el capítulo 4. Los análisis comprenden la determinación de humedad, volátiles, cenizas, carbón fijo, azufre, poder calorífico y cloro.

El análisis que se hizo para los parámetros analizados, fue al carbón tal como se recibió, sin embargo, debido a que los carbones no solo contienen sustancias orgánicas combustibles sino también sustancias incombustibles como minerales y agua, es necesario para su manejo, interpretación y utilización relacionar el análisis a una base determinada, la cual para este análisis es una base seca; es decir al carbón libre de humedad.

Características	Taller 2	Taller 8
Humedad Total %	6.91	7.74
Humedad Gruesa %	4.32	5.00
Humedad Fina %	2.59	2.74
Volátiles, % tal como recibido	5.97	6.75
Volátiles, % base seca	6.12	6.95
Cenizas, % tal como recibido	3.21	11.00
Cenizas, % base seca	3.29	11.31
Carbón fijo, % tal como	88.17	79.43
recibido		
Carbón fijo, % base seca	90.52	81.67
Azufre, % tal como recibido	1.70	1.86
Azufre, % base seca	1.74	1.91
Poder Calorífico kcal/kg tal	7622	6928
como recibido		
Poder Calorífico kcal/kg base	7825	7123
seca		
Cloro	0.019	0.282

Tabla 46. Análisis químico y propiedades de combustión de muestras de los talleres 2 y 8

En base a la tabla 6, que muestra la clasificación ASTM de los carbones, de acuerdo a su carbono fijo (base seca), el carbón del taller 2 es una antracita, perteneciendo al grupo de semi-antracita; mientras que el carbón del taller 8 es un bituminoso, o lo que comúnmente se conoce como hulla, perteneciendo al grupo de bituminoso bajo volátil.

El combustible sólido más adecuado para fabricar fundiciones grises en horno cubilote es el coque, principalmente por su bajo contenido en azufre. En lugar de coque, estos talleres, donde se ha analizado su carbón, utilizan hulla o antracita. Para poder discutir la calidad encontrada en estos dos carbones, en la tabla 47 vemos que se ha comparado el coque, de la cual la literatura encontrada siempre lo considera para discutir todo lo que involucra la operación en el cubilote, con los carbones de estos dos talleres (utilizaremos los valores de base seca), y vemos si cumple o no con estos valores característicos del coque.

f in the set of the							
Características	Coque	Taller 2	Taller 8				
Humedad Total %	3 aprox.	No cumple	No cumple				
Volátiles, % base seca	1 aprox.	No cumple	No cumple				
Cenizas, % base seca	7 a 10	Menor al rango	Cerca al rango				
Carbón fijo, % base seca	84 a 90	Cerca al rango	No cumple				
Azufre, % base seca	0.03	No cumple	No cumple				
Poder Calorífico kcal/kg base	7003	Por encima	Por encima				
seca							

Tabla 47. Análisis químico y propiedades de combustión de muestras de los talleres 2 y 8

Fuente: Elaboración propia

En cuanto a humedad total podemos decir que ambos carbones están por encima de 3%, este parámetro básicamente no debe ser muy alto ya que carbones con un alto contenido de humedad generan un mayor consumo de energía, incrementado los costos en los talleres de fundición. Al estar por encima de este valor podemos decir que posiblemente se esté generando un mayor consumo de energía al momento de la operación del cubilote.

En el caso de volátiles ambos carbones están por muy encima. Los carbones con alto contenido volátil pueden ser fáciles de encender, pero no tan baratos como los carbones menos volátiles, y éstos a su vez pueden resultar más difíciles de encender, pero contendrán más energía por unidad de volumen. Es por ello que podemos decir que estos carbones serán más fáciles de encender con un detrimento en su energía.

En el caso de las cenizas el carbón del taller 2 está por debajo y el carbón del taller 8 está cerca al rango. Su contenido representa la cantidad de impurezas en la muestra y el carbón efectivo disponible. Esto quiere decir que estás muestras en cuanto al contenido de cenizas no tienen muchas impurezas y presentan en cuanto a cenizas una buena ventaja como el coque.

En cuanto al porcentaje de carbón fijo, el carbón del taller 2 se acerca mucho a este valor, mientras que el del taller 8 es inferior. El carbón fijo representa la porción del combustible que libera calor en la combustión y además es absorbido por la fundición haciendo la que la fundición aumente su porcentaje de carbono.

En cuanto al azufre, podemos decir que los carbones se encuentran muy por encima del valor del coque en cuanto este parámetro. El porcentaje de azufre es un índice de la calidad de un combustible, es muy importante ya que disminuye el poder calorífico y es absorbido por la fundición en el horno de cubilote. El azufre absorbido por el hierro fundido en el cubilote varia casi directamente con el contenido de azufre del coque. A este respecto, el azufre se comporta en forma parecida al carbono, excepto por el hecho de que la absorción del carbono es más alta a temperaturas elevadas, mientras que la absorción de azufre es generalmente más alta a temperaturas bajas. El azufre en este caso sobrepasa de sobremanera al valor que tiene el coque, por ello absorberá mucho azufre en el cubilote, lo cual se ha visto reflejado en el azufre contenido en las muestras, el cual en general ha sido elevado, causando defectos que menguan las propiedades mecánicas de las piezas.

En cuanto al poder calorífico, o valor de calentamiento del combustible es una medida del calor entregado al cubilote, podemos decir que los carbones de los talleres analizados son mayores y, por tanto, entregarán más calor en teoría.

5.4. Relación entre la materia prima y la calidad de las piezas analizadas

Las propiedades de las fundiciones grises dependen del tamaño, cantidad y distribución de del grafito, y de la estructura de la matriz metálica. Estos, a su vez, dependen de la composición química del hierro, y también de las variables del proceso de fabricación, tales como: el método de fusión, la práctica de inoculación y la

velocidad de enfriamiento de la colada. Asimismo, la composición química de una fundición está ligada estrechamente con la composición química de la materia prima que se ha empleado para su fabricación.

En este sentido, es fundamental un manejo adecuado de la materia prima para obtener una fundición de calidad. Este manejo conlleva una buena selección de la chatarra que incluye, por una parte, conocimiento del tipo, calidad del material que se va a cargar en el horno, por otra parte, una adecuada proporción de los diferentes tipos de chatarras cargadas en el horno.

La caracterización química realizada a las chatarras nos ha permitido establecer su calidad en cuanto a composición y relacionarla con las características de las muestras obtenidas en los talleres. A este respecto, aunque no todas las chatarras presentan calidad estándar es mayor el porcentaje de estas muestras en las que si se evidenció una concordancia con los rangos que indican las normas.

En efecto, se observa en la tabla 43 que el 27.3% (3/11) de las chatarras cumplen un estándar de composición química que permiten ubicarlas en una clase; el 72.7% es decir 8 de 11 muestras, presentan un porcentaje de azufre adecuado y el 81.81% (9 de 11) tiene suficiente manganeso para neutralizar el azufre.

Viendo la tabla 40, en el caso de las muestras analizadas (probetas provenientes de 20 coladas) la falta de estandarización química es aún mayor sólo el 15% (3 muestras de 20) tienen una composición química que permite ubicarla en una clase, 35% (7 de 20) cumple con el rango de azufre y el 20% (4 de 20) presenta manganeso suficiente para neutralizar el azufre.

Este empeoramiento de la calidad de las muestras fundidas respecto a la de las chatarras usadas, se explica, en parte por la calidad del carbono usado como combustible, que, como se explicó, presenta un elevado contenido de azufre que evidentemente es transferido al metal fundido.

5.4.1. Sugerencias de cargas para obtener fundiciones estándar desde el punto de vista químico

Como se mencionó anteriormente, el segundo factor que influye en la composición química de las fundiciones es la adecuada proporción de la carga de materia prima en el cubilote.

Lo que se propone a continuación, son posibles modos de cargar los hornos para obtener fundiciones estandarizadas, las clases a las que queremos llegar serán las clases 25 y 35, utilizando materiales disponibles en la región norte del Perú, ya que, en la literatura técnica al respecto, las propuestas contemplan el uso de materiales no disponibles en nuestra realidad o cuya importación significaría costos muy elevados para los talleres de la zona norte del Perú.

Como punto de partida tomaremos las cargas iniciales sugeridas para producir piezas de fundición gris de clase 25 y clase 35, como lo sugiere Brown (2000), en la tabla 48.

1 abia 40. Cargas tipicas del nomo cuonote						
Clase 25	Clase 35					
30% de arrabio bajo en fósforo	25% de arrabio bajo en fósforo					
35% de retornos del taller de	35% de retornos del taller de					
fundición	fundición					
20% de chatarra de fundición	15% de chatarra baja en					
baja en fósforo	fósforo					
15% de chatarra de acero	25% de Chatarra de acero					

Tabla 18 Cargas tínicas del horno cubilota

Fuente: Brown, 2000

La materia prima que recomienda el autor no pertenece a la realidad en la que nos encontramos, como se mencionó anteriormente, por lo tanto, para obtener una clase 25 o 35, guiándonos por estas cargas tenemos que substituir los materiales que se sugieren, por materiales que hay en nuestro medio local, que tengan una composición química similar.

Viendo la tabla resumen de la composición química de las chatarras analizadas, podemos reemplazar los materiales que sugiere Brown, como se ve a continuación:

El arrabio bajo en fosforo, cuya composición la define Brown (2000), se reemplaza por el volante de motor 1 cuya composición es similar, como se muestra en la tabla 49.

composición	l				
Chatarras	%C	%Si	%Mn	%S	%P
Arrabio bajo en	3.00	3.00	1.00	0.05	0.05

Tabla 49. Comparación del arrabio con una chatarra analizada de similar

0.92

0.045

0.009

Fuente: Elaboración propia

3.314

2.22

La chatarra de fundición baja en fósforo, cuya composición definida como el caso anterior por Brown (2000), se reemplaza por la carcasa de bomba gruesa, cuya composición es similar como se muestra en la tabla 50.

Tabla 50. Comparación de la chatarra de fundición baja en fósforo de similar con una chatarra analizada de composición similar

Chatarras	%С	%Si	%Mn	%S	%P
Chatarra de	2.2	2.2	0.0	0.15	0.15
fundición baja en fósforo	3.2	2.2	0.8	0.15	0.15
Carcaza de bomba	3.28	2.13	0.65	0.19	0.02
gruesa					

Fuente: Elaboración propia

fósforo

Volante de Motor 1

La chatarra de acero, cuya composición también la define Brown (2000), se reemplaza por dos materiales. El primero corresponde a la chatarra "cilindro de metal" la cual fue la chatarra con porcentaje de carbono más bajo. La segunda corresponde a una chatarra de resortes se tomó de la tabla 11 del capítulo 3, que sugiere Baquero (2000). En la tabla 51, se comparan los materiales.

composicion					
Chatarras	%С	%Si	%Mn	%S	%P
Chatarra de acero	0.1	0.1	0.3	0.05	0.03
Cilindro de metal	3.16	1.65	0.75	0.04	0.03
Chatarras de resortes	0.35	1.60	1.00	0.02	0.05

 Tabla 51. Comparación de chatarra de acero con chatarra de resorte de similar composición

Fuente: Elaboración propia

Para el caso los retornos del taller de fundición de clase 25 o 35, se tomará la composición química correspondiente a la norma ASTM A159, como se muestra en la tabla 52.

Tubla 52. Composiciones base ripieds de prezas rundidas de merro gris						
Grado	Carbono	Silicio	Manganeso	Azufre	Fósforo	
				máx.	máx.	
G2500	3.20-3.50	2.00-2.40	0.60-0.90	0.15	0.20	
G3500	3.00-3.30	1.80-2.20	0.60-0.90	0.15	0.12	

Tabla 52. Composiciones base típicas de piezas fundidas de hierro gris

Fuente: American Society for testing Materials, ASTM A159

Una vez definidos los materiales que reemplazarán los sugeridos por el autor con sus respectivos porcentajes, se procederá a realizar el cálculo de carga para una fundición de clase 25 y 35.

A continuación, mostraremos el cálculo de carga para una carga de clase 25, tomando las consideraciones anteriores.

Procedemos a realizar el cálculo de cargas como se explicó en el capítulo 3, teniendo las siguientes consideraciones, cuya hoja de cálculo se muestra en la tabla 53.

- No se ha añadido ninguna ferroaleación, ya que, en la realidad estudiada, los talleres del norte del Perú no los emplean normalmente. Existen excepciones como el caso de algunos talleres que sí los emplean cuando se les exige piezas de responsabilidad.
- En este caso, se ha asumido una pérdida de silicio del 8% del nivel cargado y una pérdida del 18% de manganeso, como lo sugiere la tabla 13, del capítulo 3. No se espera ningún cambio en el contenido de fósforo.
- La experiencia previa de operar el cubilote es el único método para determinar la absorción de azufre y, en este caso, se ha estimado en 0.03%, como lo sugiere la tabla 13.
- El hierro colado no se trata en la cuchara haciendo adiciones en la cuchara ya que, según la realidad estudiada, ningún taller lo realiza.

- La composición final calculada, muestra que los contenidos obtenidos de los elementos analizados están dentro del rango permitidos para una composición estándar de una clase 25.
- Una vez estando fijas las proporciones de los materiales, el peso total de la carga debe ser determinado junto con los pesos de los componentes individuales. Suponemos que el peso de la carga que se empleará será de una tonelada. Para la carga de la tabla 53 los pesos de los componentes individuales serían como se muestran en la tabla 54.

		Composición					Contribución a la carga					
		TC	Si	Mn	Р	S		TC	Si	Mn	Р	S
Volante de Motor 1	30%	3.31	2.22	0.92	0.01	0.05	x0.30	0.99	0.67	0.28	0.00	0.01
Retornos de clase 25	35%	3.20	2.40	0.60	0.10	0.08	x0.35	1.12	0.84	0.21	0.04	0.03
Carcasa de bomba gruesa	20%	3.28	2.13	0.65	0.02	0.19	x0.20	0.66	0.43	0.13	0.00	0.04
Cilindro de metal	15%	3.16	1.65	0.75	0.03	0.04	x0.15	0.47	0.25	0.11	0.00	0.01
Ferroaleaciones												
Composición en la carga								3.24	2.18	0.73	0.05	0.09
Cambio en la fusión		En el C suponemos aumento de En el Si=0.08×2.18 En el Mn=0.18×0.73				e 0.16	+0.16	-0.17	-0.13		0.03	
Composición después del cambio de fusión								3.40	2.01	0.60	0.05	0.12
Adición en la cuchara												
Composición estimada								3.40	2.01	0.60	0.05	0.12

 Tabla 53.
 Hoja de cálculo de carga para fundición de clase 25 sin arrabio

Tabla 54.Pesos individuales para la hoja de cálculo de carga para fundición de
clase 25

300kg	Volante de motor 1
350kg	Retornos de fundición de clase 25
200kg	Carcasa de bomba gruesa
150kg	Cilindro de metal
Fuente: E	laboración propia

El cálculo de carga para una clase 35, se procederá de manera similar como se hizo con la clase 25, cuya hoja de cálculo se muestra en la tabla 55. Para este caso, se utilizó el volante de motor 1, retornos de fundición de clase 35, carcaza de bomba gruesa y chatarras de resortes. No se utilizó el cilindro de metal como en el caso anterior, ya que al ser el porcentaje de carbono de clase 35 bajo, no alcanzaría a bajar el porcentaje de carbono al nivel requerido. Utilizando una chatarra de bajo contenido de carbono si se logra, como se verá a continuación.

Procedemos a realizar el cálculo de cargas como se explicó en el capítulo 3, teniendo las siguientes consideraciones:

- No se ha añadido ninguna ferroaleación, como se explicó en el caso anterior.
- En este caso, se ha asumido una pérdida de silicio del 10% del nivel cargado y una pérdida del 20% de manganeso, como lo sugiere la tabla 13, del capítulo 3. No se espera ningún cambio en el contenido de fósforo.
- La experiencia previa de operar el cubilote es el único método para determinar la absorción de azufre y, en este caso, se ha estimado en 0.04%, como lo sugiere la tabla 13.
- El hierro colado no se trata en la cuchara haciendo adiciones en la cuchara ya que, según la realidad estudiada, ningún taller lo realiza.
- La composición final calculada, muestra que los contenidos obtenidos de los elementos analizados están dentro del rango permitidos para una composición estándar de una clase 35.
- Suponemos que el peso de la carga que se empleará será de una tonelada. Para la carga de la tabla 55 los pesos de los componentes individuales serían como se muestran en la tabla 56.

Tabla 55. Troja de caredo de carga para funcición de clase 55 sin artablo												
		Composición				Contribución a la carga						
		TC	Si	Mn	Р	S		ТС	Si	Mn	Р	S
Volante de Motor 1	25%	3.31	2.22	0.92	0.01	0.05	x0.25	0.83	0.56	0.23	0.00	0.01
Retornos de clase 35	35%	3.00	2.20	0.60	0.10	0.10	x0.35	1.05	0.77	0.21	0.04	0.04
Carcasa de bomba gruesa	15%	3.28	2.28	0.65	0.02	0.19	x0.15	0.49	0.34	0.10	0.00	0.03
Chatarra de resortes	25%	0.35	1.60	1.00	0.05	0.02	x0.25	0.09	0.40	0.25	0.01	0.01
Ferroaleaciones												
Composición en la								2.46	2.07	0.79	0.05	0.08
Cambio en la fusión		En el C suponemos aumento de 0.54 En el Si= 0.10×2.07 En el Mn= 0.20×0.79				e 0.54	+0.54	-0.21	-0.16		0.04	
Composición después del cambio de fusión								3.00	1.86	0.63	0.05	0.12
Adición en la cuchara												
Composición estimada								3.00	1.86	0.63	0.05	0.12

Tabla 55. Hoja de cálculo de carga para fundición de clase 35 sin arrabio

 Tabla 56. Pesos individuales para la hoja de cálculo de carga para fundición de clase 35

u	chase se
250kg	Volante de motor 1
350kg	Retornos de fundición de clase 35
150kg	Carcasa de bomba gruesa
250kg	Chatarra de resortes

Fuente: Elaboración propia

Los resultados anteriores muestran que, haciendo un adecuado balance de cargas con la materia prima disponible en la región norte del Perú, podrían obtenerse fundiciones estandarizadas desde el punto de vista químico. Siguiendo esta sugerencia, los talleres pueden elevar la calidad de sus piezas sin tener que gastar más. El propósito de nuestro estudio está orientado a talleres pequeños, a los cuales después de haberlos analizado podemos sugerirles este cambio que puede ser significativo en sus resultados sin tener que gastar tanto.

Hay que tener en cuenta sin embargo que, como se observó en los cálculos de carga anteriores, en el cambio en la fusión, se supuso un aumento de azufre de 0.04% como máximo. Dicha suposición es válida si es que el combustible empleado es coque; sin embargo, en los talleres visitados se utilizan carbones de mayor contenido en azufre como se analizó anteriormente.

Para tener una idea de cuánto es dicha variación, se supone que la composición en la carga, resultó aproximadamente 0.08%, como se vio en los ejemplos de cálculos de carga anteriores, utilizando chatarras de bajo contenido en azufre. Ahora, en vez de sumar 0.04%, que es el aumento de azufre para coque, para obtener la composición final de azufre esperada, se resta 0.08% del contenido de azufre de la composición final de cada una de las muestras, para conocer cuánto fue el aumento de azufre. Los resultados se presentan en la tabla 57.

En la columna del porcentaje de aumento de azufre de menor a mayor, vemos el porcentaje varía de 0.202% a 0.003%. De las 26 muestras, 14 de ellas están por encima del valor de 0.04% que es el aumento de azufre empleando coque; es decir 53.8% de las muestras tienen un aumento de azufre mayor a 0.04%, esto ocurre como se mencionó anteriormente posiblemente por el alto contenido de azufre que existen en los carbones que los talleres emplean.

%Aumen	to de S p	or taller	%Aumento de S de menor a mayor				
Taller	Muestra	%Aumento	%Aumento	Muestra	Taller		
	M1	0.088	0.202	M6	Taller 3		
Taller 1	M2	0.087	0.189	M7	Taller 4		
	M3	0.003	0.137	M8	Taller 4		
Taller 2	M5	0.091	0.091	M5	Taller 2		
Taller 3	M6	0.202	0.090	M15	Taller 6		
Taller 4	M7	0.189	0.090	M16	Taller 6		
	M8	0.137	0.088	M1	Taller 1		
	M9	0.020	0.087	M2	Taller 1		
Taller 5	M11	0.072	0.082	M30	Taller 10		
	M12	0.070	0.074	M14	Taller 6		
Taller 6	M14	0.074	0.072	M11	Taller 5		
	M15	0.090	0.070	M12	Taller 5		
	M16	0.090	0.065	M17	Taller 7		
Taller 7	M17	0.065	0.046	M19	Taller 8		
Taller 8	M19	0.046	0.037	M26	Taller 9		
	M20	0.020	0.036	M23	Taller 9		
	M21	0.010	0.036	M24	Taller 9		
	M22	0.010	0.036	M25	Taller 9		
Taller 9	M23	0.036	0.020	M9	Taller 4		

Tabla 57. Posible aumento de azufre debido al carbón

%Aumento de S por taller			%Aumento de S de menor a mayor				
Taller	Muestra	%Aumento	%Aumento	Muestra	Taller		
	M24	0.036	0.020	M20	Taller 8		
	M25	0.036	0.012	M27	Taller 9		
	M26	0.037	0.012	M28	Taller 9		
	M27	0.012	0.012	M29	Taller 9		
	M28	0.012	0.010	M21	Taller 8		
	M29	0.012	0.010	M22	Taller 8		
Taller 10	M30	0.082	0.003	M3	Taller 1		

El único caso en el que se tiene certeza que la chatarra analizada empleada dio como resultado la muestra fabricada, fue la muestra M8 del Taller 4.

Como se muestra en la tabla 25, las chatarras C1, C2, C3 y C4 se emplearon en el taller 4, para la fabricación de la muestra M8. Teniendo la composición de todas estas muestras, podemos analizar lo que pasa con el azufre. En la tabla 80, se muestra la hoja de cálculo de carga, sólo para el caso de azufre de la muestra. Como no se sabe cuáles son los porcentajes que se emplean en este taller, se supone lo que sugiere la literatura. Conociendo la composición final de la muestra 8, en este caso el porcentaje de azufre es 0.217%, y la composición en la carga, se puede calcular el aumento del porcentaje de azufre en el cambio en la fusión el cual resulta 0.11%, lo cual está muy por encima de 0.04% que es el aumento de azufre en el caso del coque. Corrobora la idea que hay un aumento de azufre en el proceso y es mayor que el que dice la literatura.

		Composición		Contribución a la carga
Carcaza bomba delgada	30%	0.145	×0.30	0.04
Carcaza bomba gruesa	35%	0.045	×0.35	0.02
Volante de Motor 1	20%	0.106	×0.20	0.02
Volante de Motor 2	15%	0.189	×0.15	0.03
Ferroaleaciones				
Composición en la carga				0.11
Cambio en la fusión				0.11
Composición después del cambio de fusión				0.22
Adición en la cuchara				
Composición estimada				0.22

Tabla 58. Hoja de cálculo de carga para el azufre de la muestra M8

Fuente: Elaboración propia

Los balances sugeridos serán exitosos si el combustible que se usa se mejora, utilizando uno de menor contenido de azufre como el coque o antracita de mejor calidad. Cabe recalcar que los carbones antracita y hulla que son los empleados por los talleres tienen diferentes calidades dependiendo de la empresa que los fabrica, por ello, conviene carbones de mejor calidad, los cuales tienen un contenido de azufre menor. De todos modos, haciendo una distribución de cargas más racional, se puede esperar una mejora en la calidad del material obtenido.

Conclusiones

- 1. Las normas que caracterizan a las fundiciones grises indican una estandarización para composición química y para comportamiento mecánico. Cuando el modo de fabricación es el adecuado, la composición química asegura unas propiedades mecánicas específicas para dicha composición.
- 2. Desde el punto de vista de composición química de las 20 muestras analizadas (las de una misma pieza y de una misma colada se contaron como si fuera una sola), 03 cumplen el estándar de composición química, lo cual en porcentaje equivale a un 15% del total. Sin embargo, éstas no presentan las propiedades mecánicas que corresponden a dicha composición química, según los estándares.
- 3. Según el carbono equivalente, la mayoría de piezas analizadas se catalogan como fundiciones hipoeutécticas, en principio adecuadas para aplicaciones estructurales, sin embargo, éstas no alcanzan la resistencia mecánica que corresponde a su clase.
- 4. Cuando se fabrican piezas con alta resistencia mecánica, la norma indica un contenido de carbono menor a 3.4%. En nuestro estudio, más de la mitad de las muestras cumplen con esta especificación, pero, al igual que con el carbono equivalente, no hubo coherencia con las propiedades mecánicas obtenidas.
- 5. Aunque las piezas analizadas según la composición de carbono equivalente son fundiciones grises hipoeutécticas, la presencia de defectos ha hecho menguar sus propiedades mecánicas. Dichos defectos tienen su principal génesis en la composición química, específicamente en el contenido de azufre.
- 6. El azufre es uno de los elementos más perniciosos para las fundiciones y su contenido está limitado a valores comprendidos entre 0.05% a 0.12%, con el fin de asegurar buenas propiedades en las piezas fundidas. Este elemento, disminuye la colabilidad de la fundición, por lo cual es uno de los principales causantes de los defectos de fusión encontrados.
- 7. El contenido de azufre del 35% de las muestras analizadas de los talleres, no cumple con el rango establecido por las normas. Sin embargo, el 72.7% de las chatarras analizadas (08 de 11 muestras), sí presentan un contenido de azufre dentro del rango óptimo, esto indica que hay un factor adicional que eleva el

porcentaje de azufre en las muestras producidas. Es previsible que este factor sea el combustible sólido empleado (antracita o hulla).

- 8. El combustible sólido más adecuado para fabricar fundiciones grises en horno cubilote es el coque, principalmente por su bajo contenido en azufre. En lugar de coque, los talleres utilizan hulla o antracita, cuyo contenido es muy elevado en comparación con el coque (1.74% y 1.91% de azufre en las dos muestras analizadas, frente a contenidos menores de 0.8% en coques de calidad), lo cual hace que el porcentaje de este elemento en la composición final de las piezas fundidas sea muy elevado, causando defectos que reducen las propiedades mecánicas de las piezas.
- 9. En las muestras de chatarra, el manganeso cumple con neutralizar el porcentaje de azufre en el 81.8% de los casos. Por otro lado, en las piezas producidas en los talleres esta neutralización se cumple en un 20% de las muestras. Esto quiere decir que, el contenido extra de azufre adquirido en las piezas fundidas, ya no podría ser neutralizado, sólo por el contenido de manganeso presente en la chatarra utilizada y se hace necesario el uso de ferroaleaciones para equilibrar el manganeso.
- 10. El contenido de fósforo es muy bajo en la chatarra, y por ende en las piezas fundidas de los talleres también resultó muy bajo en general. Esto se traduce en un porcentaje en volumen de esteadita bajo, lo cual es ventajoso ya que esta fase, tiende a fragilizar las piezas.
- 11. Los defectos presentes en las fundiciones pueden deberse al proceso de fabricación, calidad de la materia prima o a las características del proceso de moldeo y calidad de arena. Se han encontrado defectos que dependen de estos factores. Desde el punto de vista del material los defectos encontrados son aquellos que corresponden a la presencia de azufre. El alto contenido de azufre de las muestras y el déficit de manganeso para neutralizarlo, se han evidenciado en la presencia de microporos y microrechupes observados en las muestras en porcentajes mayores que los que se observan habitualmente en estos materiales.
- 12. De todas las muestras de los talleres, 19 de ellas se mecanizaron para fabricar las probetas de tracción. De estas muestras, sólo se fabricaron 16 probetas, los tres restantes no pudieron fabricarse ya que presentaron defectos de fusión en el proceso de mecanizado.
- 13. Al analizar todas las características, tanto químicas como microestructurales, observamos, que en los talleres en los que se analizaron más de una muestra, no se obtiene repetibilidad de resultados ya que ninguno consigue obtener fundiciones de la misma composición o las mismas características microestructurales.
- 14. La repetibilidad de resultados, es un aspecto muy importante porque podemos concluir si existe o no un procedimiento sistematizado en los talleres analizados, el cual se pueda seguir siempre para obtener los mismos resultados.

- 15. La calidad de la fundición laminar también está influenciada por los tamaños de grafito. Según indica la norma UNE 36117, para aplicaciones estructurales, los tamaños preferenciales son los más pequeños. En nuestro caso, hemos encontrado grafitos muy heterogéneos en toda la sección de la pieza, lo que no demuestra una calidad microestructural adecuada.
- 16. La microestructura observada en las muestras es mayoritariamente perlítica, encontrándose perlita gruesa y fina en una misma sección, lo cual evidencia una heterogeneidad microestructural, sumándose esto a la aparición de zonas ferritizadas en algunas muestras de los talleres. Lo dicho anteriormente, se ve corroborado por los resultados de dureza, los cuales también muestran heterogeneidad en los valores obtenidos.
- 17. También se puede concluir que, en los talleres, generalmente, no se hace una adecuada selección de la chatarra empleada, así como tampoco se tiene un control en cuanto a la proporción de carga que ingresa al horno.
- 18. En general los talleres que tienen más fortalezas en La Libertad, Lambayeque y Piura, sí tienen un conocimiento de que la selección de materia prima es fundamental, para obtener piezas de calidad, y lo utilizan cuando la pieza a obtener es de responsabilidad.
- 19. En vista de que las muestras de los talleres no cumplen la estandarización química, se hizo una sugerencia de cómo alcanzar dicha estandarización por medio de una adecuada selección de materia prima y una adecuada proporción de dicha materia.
- 20. Uno de los factores de los que depende el contenido de azufre de las muestras, es el azufre absorbido del combustible durante el proceso de fusión. El 53.8% de las muestras, tienen un aumento de azufre mayor a 0.04%, que es el incremento aproximado que la literatura nos da para el coque. Con el objetivo de mejorar la calidad de las piezas de fundición fabricadas por los talleres, surge la necesidad de usar mejores carbones, utilizando uno de menor contenido de azufre como el coque o antracita de mejor calidad.
- 21. El cálculo de cargas sugerido garantiza un contendido de carbono, silicio, manganeso y fósforo dentro de los estándares; sin embargo, para el azufre, habría que utilizar carbones con menos contenido de azufre, porque como se ha demostrado, los carbones que los talleres emplean, hacen que el incremento de azufre sea mucho mayor al que sugiere la literatura con el uso de coque y no es posible bajarlos con los métodos de desulfuración habituales.
- 22. Una de las dificultades con las que se encuentran los fundidores es la falta de catalogación de las chatarras en el norte de Perú. Ante esto, se han analizado once piezas de las chatarras más comunes que se utilizan en los talleres, sugeridas por los mismos fundidores y por sus proveedores, las cuales llegaron a caracterizarse tanto química como mecánicamente.

- 23. En base a la catalogación de chatarra realizada, los fundidores ya podrían seleccionar la materia prima adecuada para las piezas de fundición que deseen fabricar, una práctica que actualmente no llevan a cabo pero que es recomendable realizar. La calidad en cuanto a composición química del material no sólo depende de una adecuada selección de la materia prima, sino también de la proporción de las cargas, en este sentido, se sugiere una adecuada proporción de cargas en base a las chatarras ya catalogadas, una sugerencia bastante práctica ya que la literatura sugiere materiales que no existen en el Perú, o es muy difícil conseguirlos.
- 24. Paralelamente a las buenas prácticas de selección de chatarra y adecuada proporción de cargas en el cubilote, hay que poner mucha atención al proceso de moldeo, la calidad de las arenas, control de las temperaturas del horno, una buena técnica de colada y las características técnicas de los hornos, porque son factores que incidirán en la calidad de las piezas fundidas y si no se tienen en cuenta aparecerán defectos propios de un mal manejo de estos factores.

Bibliografía

- Apraiz J. (1999). Fundiciones (Sexta Edición). Ed. Dossat. España.
- Askeland D. y Wright W. (2013). Ciencia e Ingeniería de los Materiales. Séptima Edición. Cengage Learning. México.
- Baez I. (2004). Manual de carbones y coquización. Universidad Pedagógica y Tecnológica de Colombia.
- Baquero A. (2000). Diseño, Operación y Control del Cubilote. Ediciones UIS. Bucaramanga. Colombia.
- Bautista D. y Jerez E. (2005). Evaluación de los métodos de control de calidad en la fabricación de piezas en fundición nodular en fundiciones de metales de Lima LTDA. Universidad Industrial de Santander. Bucaramanga. Colombia.
- Blázquez V., Lorenzo V. y Del Río B. Ingeniería y Ciencia de los materiales Metálicos. (2014). Madrid. España.
- Bravo F. (2005). Tratamientos Térmicos a fundiciones grises de la región Grau Fabricadas en horno de cubilote. Universidad de Piura. Perú.
- British Cast Iron Research Association. (1979). Cupola Design, Operation and Control. Gran Bretaña.
- Callister W. y Rethwisch D. (2013) Materials Science and Engineering: An Introduction (Novena Edición). Estados Unidos.
- Capello E. (1971). Tecnología de la fundición. Ed. G. Gili. Barcelona. España.
- Chiaverini V. (2012). Aços e Ferros Fundidos. Séptima Edición. Associação Brasileira de Metalurgia e Materiais. Brasil.
- De la Cruz M. (1998). Metalurgia físico-química y caracterización de las fundiciones de grafito laminar. Universidad de Piura. Perú.
- Ecob C., Hartung C. y Olsen S-O. (2004). Common Metallurgical Defects in Grey Cast Irons. Elkem Foundry Products. Noruega.
- Entrena F. (2016). Eficiencia energética en las instalaciones de calefacción y ACS en los edificios. IC Editorial. España.
- Fras E. y Gorny M. (2008). Eutectic cell and nodule count in grey and nodular cast irons. Polonia.
- Garnier J. et al. (2007). Manual de estadísticas energéticas. Francia.
- Guerrero R. (2009). Introducción a la ciencia de materiales (Apuntes de clase, documento inédito). Universidad de Piura. Piura.
- Kostorz G. (2007). Metalli. Enciclopedia della Scienza e della Tecnica. Italia.
- Medina J. y Taco J. (2009). Diseño y Construcción de un horno cubilote con aire precalentado para fines didácticos. Escuela Politécnica Nacional. Quito. Ecuador.
- Moumeni E. et al. (2013). Solidification of cast iron A study on the effect of microalloy elements on cast iron. Universidad Técnica de Dinamarca.
- Okamoto H. (2011). Mn-S (Manganese-Sulfur). ASM International.
- Pérez P. (2007). Evaluación experimental de los perfiles de composición química del metal en un horno de cubilote y comparación con algunos modelos matemáticos. Universidad de Antioquía. Colombia.
- Pero-Sanz, J.A. (1994). Fundiciones Férreas. Ed. Dossat. Madrid. España.
- Rakhit A. (2013). The Essentials of Material Science and Technology for Engineers. Exilibris Coporation. Estados Unidos.
- Roldán J. (2013). Energías renovables lo que hay que saber. Paraninfo S.A. Ediciones. España.
- Serrano R. (2011). Defectos en las piezas fundidas. (Apuntes de clase, documento inédito). Universidad de Málaga. España.
- Talbot Besnand S. (2016). Fer L'élément métallique. Encyclopædia Universalis. Francia.
- Udroiu A. y Agriflogli N. (2014). Progettazione della composizione chimicha della ghisa. Fonderia Boccacci. Italia.
- Viswanathan S. et al. (2008). ASM Handbook, Volume 15, Casting. ASM International. Estados Unidos.

ANEXOS

Anexo A. NORMA UNE 36 117 – Tipos, tamaños y distribución de grafito

Clasificación del grafito según la Norma UNE

Clasificació	ón del grafito en las fundiciones	UNE
		36 117
1. Objeto		
Esta norma tiene por objeto clasifi que sirva de referencia en la comp micragràficos de la fundición.	car por su forma, dissribución y tamaña el aspecto microscô saroción y designación de las distintas tipas que se presenta	pico del grafito, por In en las estructura
2. Designación		
Para corocterizar el grafico observ maña de las particulas.	ada son necesarias los indicaciones referentes o la farma, a l	a distribución y al 6
A dicho fin, se utilizará la numero figura 2 para la distribución y los ticulos. Par ejemplo, si se observar cuya tamaño máximo sea de 12 a 2	sción romana de la figura 1 para la forma del grafico, los le números aràbigos de los figuras 3 a é y del cuadro 1 para 1, con 100 aumentos, particulos de grafito de la forma 1, con 25 mm, su designación será:	tras mayúsculas de l el samaña de las po s la distribución A,
	Grafita I & 4 UNE 36 117	
Si el grafito observado se encuentro bién puede señalarse el tomaño p sistemo para designar estructuras o	a entre dos tamaños, se pueda hocer referencia a los dos (por redominante subrayando éste (por ejemplo: 3/4). Asimismo, con más de dos tamaños.	ejemplo: 3/4). Tan puede emplearse es
Los estructuros miztos, pueden de	signarse mediante el tanto por ciento de los diferentes tipos	de grofiia que se pr
Así, un grofito con el 60 % de form se designará:	no I, distribución A y tamaño 4, y el 40 % de farma / distrib	oución D y lamaña
2.0	60 % I A 4; 40 % I D 7 UNE 36 117	
3. Preparación de las muest	tos	
Al tomar las muestras de la pleta de la pared, así como a su distans que se ha de examinar debe indica	fundido, debe prestarse asención a la situación de aquéllas a ció de la superfície y al emplea de elementos entriadores. La irse cuidadosamente en todo informe.	on respecto al espesa situación de la son
El óreo de la superficie que se des la distribución del grafito. El rectif anareterno en su verdadero lormà	ea examinar debe ser suficiente para proporcionar una verdad kado y pulido se realizarón, cuidadasamente a fin de que los y tamaño.	iera representación a partículas de grafit
El examen microscópico se realizar gunos fundiciones especiales como	à sobre la sección pulida, sin atacar. Sin embargo, se recomi las de alto contenida de silicio.	enda el otoque en a
4. Examen microscópica		
Se examinarió la totalidad de la s referencia en relación con la form pondiente. Después se determina e	uperficie pulido. Primeromente, se efectuaró una comporació lo y distribución del profita (figuras 1 y 2), efectuándase la i tamaño de las particulas figuras 3 o 6 y cuadro 1; con 10	r con las figuras d identificación corres 0 aumentos.
El examen con el microtropio puer oparato. El campo visual debe te l'metros de diàmetro).	a realizarse por observación directo o por proyección en la p ner aproximadamente el mismo tamaño que las liguras de re	onicilo esmerilodo d ferencia (unos 80 m
La medición de las partículas de g	rafito puede focilitarse con el empleo de ret/culos adecuados.	
5. Tipos de referencie		
Los sipos de referencia que se indi	con corresponden a la forma, distribución y tamaño de los	porticulas de grafito
Los figuros muserron ospecto de ti podrion faiseor la observación.	po ideal, en lugar de latomicrografías reales, evitando así el	acilos secundarios qu
All house from the second		Continuo
~		

Distribución de grafito

5,1 Tipo de referencia normal de la forma del grafito. Comprende sels formas características (figura 1) designadas con los números romanos I a VI. Representan los tipos principales que pueden observarse en la fundición gris. Ocasionalmente también se presentan otras formas.

5,2 Tipo de referencia normal de la distribución del grafito. Comprende cinco ejemplares (figura 2) designados con las letras A a E, que se refieren al grafito de la forma I. Los demás formas se presentan generalmente en la distribución A, aunque a veces se observan otras distribuciones.

5,3 Tipo de referencia normal del tamaño del grafito. El tamaño del grafito se determina por medio de la figura 3 y del cuadro 7. En este último, como puede observarse, los alcances de los tamaños para cada tipo de referencia, en la escala de 100 diámetros, tienen una amplitud que es la mitad de la inmediatamente superior.

Cuadro 1

Tamaño del Grafito

(Particulas de las formas / a V/)

Número de referencia	Tamaño de las partículas a 100 X mm	Medidos verdoderos min
i.	> 100	>1
2	50 o 100	0,5 a 1
3	25 a 50	0,25 a 0,5
	12 a 25	0,12 ± 0,25
5	6 a 12	0,06 a 0,12
6	3 0 6	0,03 a 0.06
7	1,5 a + 3	0,015 a 0,03
8	< 1,5	< 0,015

Formas de grafito

Cl355	Tensile Strength, min, ksi	Nominal Test Ba Diameter, in.	
No. 20 A	20	0.8	
No. 20 B		12	
No. 20 C		2.0	
No. 20 S		Bars S ⁴	
No. 25 A	25	0.88	
No. 25 B		1.2	
No. 25 C		2.0	
No. 25 S		Bars S ⁴	
No. 30 A	30	0.88	
No. 30 B		12	
No. 30 C		2.0	
No. 30 S		Bars S ⁴	
No. 35 A	35	0.88	
No. 35 E		12	
No. 35 C		2.0	
No. 35 S		Bars S ⁴	
ND. 40 A	40	0.88	
No. 40 B		12	
No. 40 C		2.0	
No. 40 S		Bars 94	
No. 45 A	45	0.88	
No. 45 B		1.2	
No. 45 C		2.0	
No. 45 S		Bars S ⁴	
No. 50 A	5D	0.88	
No. 50 B		1.2	
No. 50 C		2.0	
No. 50 S		Bars S ⁴	
No. 55 A	55	0.88	
No. 55 E		1.2	
No. 55 C		2.0	
No. 55 S		Bars S ⁴	
No. 61 A	6D	0.88	
No. EO B		1.2	
No. 60 C		2.0	
No. 60 S		Bars S ⁴	

Anexo B. NORMA ASTM A 48 – Clasificación de las fundiciones grises según su resistencia a la tracción

⁴All dimensions of test bar S shall be as agreed upon between the manufacturer and the purchaser.

TABLE 4 Diameters and Lengths of Cast les	t Bars
As-Cast Diameter, In. (mm)	Length, In. (mm)

112

Test Bar	Nominal (Mid-Length)	Minimum (Bottom)	Maximum (Top)	Minimum (Specified)	Maximum (Recommended)
A	0.68 (22.4)	0.85 [21.6]	0.95 [24.4]	5.0 [125]	6.0 [150]
в	1.20 [30.5]	1.14 [29.0]	1.32 [33.5]	6.0 [150]	9.0 [230]
C	2.00 (50.8)	1.90 [48.3]	2.10 [53.3]	7.0 1175	10.0 [255]
5A					

All dimensions of test bar S shall be as agreed upon by the manufacturer and the purchaser.

Dimensions, in. [mm]	Tension Test Spectmen A	Tension Test Specimen B	Tension Test Specimen C
G-Length of parallel, min	0.50 [13]	0.75 [19]	1.25 [32]
D-Dlameter	0.500 ± 0.010 [13 ± 0.25]	0.750 ± 0.015 [20 ± 0.4]	1.25 ± 0.025 [30 ± 0.6]
R-Radius of fillet, min	1 [25]	1 [25]	2 [50]
A-Length of reduced section, min	114 [32]	115 [3E]	214 [57]
L-Over-all length, min	394 [95]	4 [100]	69% [160]
C-Diameter of end section, approx	76 [20]	1% [20]	13/ [47]
E-Length of shoulder, min	14 [6]	14 [6]	%a [8]
F-Diameter of shoulder	56 ± 164	15%s ± 1/64	17/10 ± 1/04
	[16 ± 0.4]	$[24 \pm 0.4]$	[36 ± 0.4]
B-Length of end section		A .	

*Optional to fit holders on testing machine. If threaded, not diameter shall not be less than dimension F. FIG. 1 Tension-Test Specimens

Distribución de grafito

Type D

Туре Е

Anexo C. Micrografías de las muestras de los talleres

Taller 1

1. Muestra 1

Zona central

• Forma y distribución de grafito

La micrografía C1, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito orientadas aleatoriamente (tipo A según UNE 36 117) y con algunas formaciones de rosetas que corresponden a distribución de grafito tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la Micrografía C63, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de las láminas N° 2 y N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Matriz predominantemente perlítica. Además, en la Micrografía C64, aparecen pequeñas áreas de fósforo ternario eutéctico, conocido como esteadita.

Zona intermedia

• Forma y distribución de grafito

La Micrografía C65, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y con formaciones de rosetas que corresponden a distribución de grafito tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 2 y N° 3, como se presenta en la Micrografía C66. Clasificación: Grafito I A 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con presencia de esteadita en menor cantidad que en la zona central (ver Micrografía C67).

Zona periferia

• Forma y distribución de grafito

La

Micrografía C68, presenta láminas de grafito tipo A y con más cantidad de formaciones de rosetas que corresponden a distribución de grafito tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C69. Clasificación: Grafito I A/B 3UNE 36 117

• Tipo de matriz

En la

Micrografía C70, se muestra una matriz perlítica con esteadita (zonas blancas punteadas).

- En la Micrografía C71, se pueden apreciar muchos microporos del tipo cavidades de contracción, preferentemente en la zona central. Sin embargo, este tipo de defecto aparece a lo largo de toda la sección de la pieza.
- Otro defecto que aparece en toda la pieza, es la cantidad de partículas de gran tamaño, las cuales corresponden a sulfuros de manganeso, como se muestra en la
- Micrografía C72.
- Por último, en la
- , se muestra la forma irregular que presenta una inclusión de escoria, en la zona de la periferia de la barra.

Micrografía C62. Hierro gris hipoeutéctico, con láminas de grafito tipo A y B. Estado de pulido (no atacado). 137.08X

Micrografía C63. Fundición gris con tamaños de láminas de grafito N°2 y N°3. Estado de pulido (no atacado). 137.08X

Micrografía C64. Hierro gris en estado de colada, con matriz perlítica y áreas de esteadita. La perlita es mayoritariamente gruesa. Atacada con 3% nital. 548.33X

Micrografía C65. Distribución de láminas de grafito tipo A y B. Estado de pulido (no atacada). 200X

Micrografía C66. Tamaño de grafito N°2 y N°3, en la zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C67. Hierro gris en estado de colada. Matriz perlítica. Además, presenta esteadita en menor medida que la zona central. Hay tanto perlita gruesa como perlita fina. Atacado con 3% nital. 548.33X

Micrografía C68. Hierro gris con distribución de grafito tipo A y B. Estado de pulido (no atacado). 200X

Micrografía C69. Tamaño de láminas de grafito N°3, en la zona de la periferia de la barra. Estado de pulido (no atacado). 137.08X

Micrografía C70. Hierro gris en estado de colada. Matriz perlíticas y esteadita. Hay mayoritariamente perlita fina. Atacado con 3%. 548.33X

Micrografia C71. Hierro gris con microporos del tipo cavidades de contracción, preferentemente en zona central. Estado de pulido (no atacado). 137.08X

Micrografía C72. Inclusiones de sulfuros de manganeso (áreas grises oscuras, redondeado) en toda la pieza. Estado de pulido (no atacado). 500X

Micrografía C73. Hierro gris en estado de colada que contiene una inclusión de escoria en la periferia (áreas oscuras grandes). Estado de pulido (no atacado). 137.08X

2. Muestra 2

Zona central

• Forma y distribución de grafito

Esta muestra corresponde a un hierro gris hipoeutéctico con una distribución de láminas de grafito tipo A y forma 1, como se muestra en la Micrografía C74.

• Tamaño de grafito

En la

Micrografía C75, se muestran algunas medidas de las láminas de grafito que corresponden a N°2 y N°3. Además, se muestra un grafito tamaño N°1. Clasificación: Grafito I A 2/3 UNE 36 117

• Tipo de matriz

Esta muestra presenta una matriz perlítica (zonas oscuras) y áreas de esteadita (ver

Micrografía C76).

Zona intermedia

• Forma y distribución de grafito La

Micrografía C77, muestra láminas de grafito tipo A y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C78. Clasificación: Grafito I A 3 UNE 36 117

• Tipo de matriz

Esta zona presenta áreas de mayor tamaño de esteadita (zonas claras punteadas) en una matriz perlítica, como se muestra en la Micrografía C79.

Zona periferia

• Forma y distribución de grafito

En la

Micrografía C81, se muestra la zona de la periferia de la probeta que presenta una distribución de grafito tipo B, es decir, rosetas que contienen grafito fino. La forma de las láminas corresponde a la forma I según UNE 36 117.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño desde N° 3 al N°5. Sin embargo, la mayoría de láminas son de tamaño N°4 (ver Micrografía C82)

Clasificación: Grafito I B 3/4 UNE 36 117

• Tipo de matriz

La matriz que presenta esta probeta es perlítica con esteadita (zonas blancas punteadas), como se muestra en la Micrografía C83.

- En esta probeta se pueden apreciar dos tipos de defectos que aparecen en toda la sección de la pieza, por un lado microporos mostrados en la
- Micrografía C84 y sulfuros de manganeso presentados en la micrografía C24.

Micrografía C74. Grafito laminar tipo A, en la zona central. Estado de pulido (no

Micrografía C75.Grafito laminar tipo B, en la zona central. Estado de pulido (no atacado). 137.08X

atacado). 137.08X

Micrografía C77.Hierro fundido en estado de colada con matriz perlítica (zonas oscuras), con áreas de esteadita. Hay perlita gruesa como perlita fina. Atacada con 3% nital. 548.33X

Micrografía C78.Láminas de grafito tipo A y forma I. Estado de pulido (no atacada). 200X

Micrografía C79.Tamaños de grafito N°3, en la zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C80.Hierro gris en estado de colada, con matriz perlítica y esteadita (áreas claras punteadas). Hay perlita fina y gruesa. Atacado con 3% nital. 548.33X

Micrografía C81.Láminas de grafito tipo B (rosetas) y forma I, en la zona de la periferia. Estado de pulido (no atacada). 200X

Micrografía C82.Tamaños de grafito desde N°3 al N°5. Estado de pulido (no atacada). 137.08X

Micrografía C83.Hierro fundido en estado de colada. Matriz perlítica y zonas de esteadita. Hay perlita fina y gruesa. Atacada con 3% nital. 548.33X

Micrografía C84.Microporos del tipo cavidades de contracción (áreas oscuras). Estado de pulido (no atacado). 137.08X

Micrografía C85.Partículas dispersas de sulfuros de manganeso (áreas grises redondeadas). Estado de pulido. 500X

3. Muestra 3

Zona central

• Forma y distribución de grafito

Esta muestra corresponde a un hierro gris hipoeutéctico con una distribución de láminas de grafito tipo A, puesto que, según se observa en la Micrografía C86, las hojuelas están distribuidas uniformemente. En algunas zonas, se aprecia también la ligera formación de agrupamientos o rosetas, por lo que se clasifica como láminas de grafito de tipo B. Cabe señalar también que, la forma del grafito es de tipo I.

• Tamaño de grafito

En la

Micrografía C87, se muestran algunas medidas de las láminas de grafito que corresponden a tamaños N° 3 y 4.

Clasificación: Grafito I A 3/4 UNE 36 117

• Tipo de matriz

Esta muestra presenta una matriz perlítica (zonas oscuras) y áreas de esteadita (ver

Micrografia C88).

Zona intermedia

• Forma y distribución de grafito

La

Micrografía C89, muestra láminas de grafito tipo A y en la Micrografía C90, se observa grafito tipo D, puesto que se visualiza segregación interdentrítica y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño Nº 4, como se presenta en la

Micrografía C91. Clasificación: Grafito I B 4/5 UNE 36 117

• Tipo de matriz

Esta zona presenta áreas de menor tamaño de esteadita (zonas claras) en una matriz perlítica, como se muestra en la Micrografía C92.

Zona periferia

• Forma y distribución de grafito

En la

Micrografía C93, se muestra la zona de la periferia de la probeta que presenta una distribución de grafito tipo B, es decir, rosetas que contienen grafito fino. La forma de las láminas corresponde a la forma I según UNE 36 117.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaños N°s 4 y 5. (Ver Micrografía C94) Clasificación: Grafito I B 4/5 UNE 36 117

• Tipo de matriz

La matriz que presenta esta probeta es perlítica con esteadita (zonas blancas), como se muestra en la Micrografía C95.

- En esta probeta se pueden apreciar tres tipos de defectos que aparecen en toda la sección de la pieza, por un lado microporos mostrados en la Micrografía C96, sulfuros de manganeso presentados en la
- Micrografía C97. También se muestra un microrrechupe, en la zona central de la probeta que se puede visualizar en la
- Micrografía C98.

Micrografía C86.Grafito laminar tipo A, en la zona central. Estado de pulido (no atacado). 200X

Micrografía C87. Medidas de láminas de grafito N°s 3 y 4. Estado de pulido (no atacado). 137.08X

Micrografía C88.Hierro fundido en estado de colada con matriz perlítica (zonas oscuras), con áreas de esteadita. Hay mayoritariamente perlita fina.Atacada con 3% nital. 548.33X

Micrografía C89. Láminas de grafito tipo A, forma I. Estado de pulido (no atacada). 200X

Micrografía C90.Láminas de grafito tipo D, forma I. Estado de pulido (no atacada). 137.08X

Micrografía C91.Tamaño de grafito N°4, en la zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C92.Hierro gris en estado de colada, con matriz perlítica y esteadita (áreas claras punteadas). Hay mayoritariamente perlita fina. Atacado con 3% nital. 548.33X

Micrografía C93.Láminas de grafito tipo B (rosetas) y forma I, en la zona de la periferia. Estado de pulido (no atacada). 200X

Micrografía C94. Tamaños de grafito N°s 4 y 5. Estado de pulido (no atacada). 137.08X

Micrografía C95.Hierro fundido en estado de colada. Matriz perlítica y zonas de esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548.33X

Micrografía C96.Microporos del tipo cavidades de contracción (áreas oscuras). Estado de pulido (no atacado). 137.08X

Micrografía C97. Partículas dispersas de sulfuros de manganeso (áreas grises redondeadas). Estado de pulido. 500X

Micrografía C98.Microrrechupe en la zona central (áreas negro oscuro). Estado de pulido. 548.33X

Taller 2

4. Muestra 5

Zona central

• Forma y distribución de grafito

La

Micrografía C99, muestra el hierro gris hipoeutéctico conteniendo grafito tipo A de láminas finas y orientación aleatoria y tipo B en toda esta zona. La forma de todas las láminas corresponde a forma I.

• Tamaño de grafito

En la

Micrografía C100, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de las láminas N° 2 y 3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz predominantemente perlítica con áreas de fase esteadita (zonas blancas punteadas). (Ver Micrografía C101).

Zona intermedia

• Forma y distribución de grafito

La

Micrografía C102, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 2 y N° 3, como se presenta en la Micrografía C103. Sin embargo, la mayoría de láminas son de tamaño N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con áreas de fase estadita (ver Micrografía C104).

Zona periferia

• Forma y distribución de grafito

La Micrografía C105, presenta una fundición hipoeutéctica con láminas de grafito tipo A y B, forma I.

- Tamaño de grafito Las láminas de grafito corresponden a tamaño N° 3 y N°4, como se presenta en la Micrografía C105. Clasificación: Grafito I A/B 3/4 UNE 36 117
- Tipo de matriz

En la

Micrografía C106, se muestra una matriz perlítica, con algunas áreas de esteadita.

• En la Micrografía C109, se puede apreciar un microrrechupe, además de pequeños microporos que aparecen a lo largo de toda la sección de la pieza. Además, esta probeta presenta una gran cantidad de sulfuros de manganeso en comparación con las probetas anteriormente caracterizadas, esto se puede observar claramente en la Micrografía C110.

Micrografía C99. Láminas de grafito tipo A y forma I. Estado de pulido (no atacado). 200X

Micrografía C100. Tamaño de grafito N°2 y N°3, en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C101. Hierro gris en estado de colada, con matriz preferentemente perlítica con áreas de esteadita. Hay mayoritariamente perlita gruesa. Atacado con 3% nital. 548.33X

Micrografía C102. Láminas de grafito tipo A, forma I, en la zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C103. Medidas de las láminas de grafito que corresponden a tamaños N°2 yN°3. Estado de pulido (no atacado). 137.08X

Micrografía C104. Láminas de grafito tipo A, forma I, en la zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C105. Medidas de las láminas de grafito que corresponden a tamaños N°2 yN°3. Estado de pulido (no atacado). 137.08X

Micrografía C106. Hierro fundido en estado de colada. Matriz perlítica con áreas de esteadita. Hay mayoritariamente perlita gruesa. Atacada con 3% nital. 548.33X

Micrografía C107. Tamaño de láminas de grafito N° 3 y N° 4. Estado de pulido (no atacada). 200X

Micrografía C108. Tamaño de láminas de grafito N° 3 y N° 4. Estado de pulido (no atacada). Hay tanto perlita fina como gruesa.137.08X

Micrografía C109. Microrrechupe en la zona intermedia de la pieza. Estado de pulido (no atacada). 137.08X.

Micrografía C110. Microporos en la zona intermedia de la pieza. Estado de pulido (no atacada). 137.08X

Taller 3

5. Muestra M6

Zona central

• Forma y distribución de grafito

La Micrografía C111, muestra una distribución de láminas de grafito tipo A y B. Todas las láminas de grafito que presenta son de la forma I.

• Tamaño de grafito

En la

Micrografía C112, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de las láminas N° 3 y N°4. Clasificación: Grafito I A/B 3/4 UNE 36 117

• Tipo de matriz

La Micrografía C113, muestra una microestructura de la matriz perlítica y algunas zonas con fase esteadita (zonas blancas punteadas).

Zona periferia

• Forma y distribución de grafito

La Micrografía C114, presenta láminas de grafito tipo B y forma I, es decir, rosetas con láminas de grafito finas.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 4 y N°5, como se presenta en la

Micrografía C115. A comparación con la zona central, los tamaños de las rosetas son menores y la forma de las mismas es más compacta. Clasificación: Grafito I B 4/5 UNE 36 117

• Tipo de matriz

En la Micrografía C116, se muestra una matriz perlítica, también con esteadita en algunas zonas.

Defectos

• En la Micrografía C117, se pueden apreciar algunos microporos del tipo cavidades de contracción, de menor tamaño en contraste con las muestras anteriores. Además, se observan microrrechupes. Otro defecto que aparece en toda la pieza, es la gran cantidad de partículas de gran tamaño, las cuales corresponden a sulfuros de manganeso (ver micrografía C62).

Micrografía C111. Láminas de grafito tipo A y B y forma I. Estado de pulido (no atacada). 200X

Micrografía C112. Tamaño de las láminas de grafito N° 3 y N°4. Estado de pulido (no atacada). 137.08X

Micrografía C113. Hierro fundido en estado de colada. Matriz perlítica con algunas zonas de esteadita. Hay tanto perlita gruesa como fina. Atacada con 3% nital. 548.33X

Micrografía C114. Medidas de tamaños de grafito, que corresponde a tamaños N°4 y N°5. Estado de pulido (no atacada). 137.08X

Micrografía C115. Láminas de grafito tipo B, distribución no uniforme. Estado de pulido (no atacada). 200X

Micrografía C116. Hierro fundido en estado de colada. Matriz perlítica con algunas zonas de esteadita. Hay perlita tanto fina como gruesa. Atacada con 3% nital. 548.33X

Micrografía C117. Pequeños microporos y microrrechupes. Estado de pulido (no atacada). 137.08X

Micrografía C118. Gran cantidad de sulfuros de manganeso. Estado de pulido (no atacada). 500X

Taller 4

6. Muestra 7

Zona central

• Forma y distribución de grafito

La

Micrografía C119, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito orientadas aleatoriamente (tipo A según UNE 36 117) y rosetas que corresponden a distribución de grafito tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la Micrografía C120, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de las láminas N° 4 y N°5. Clasificación: Grafito I A/B 4/5 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica (ver Micrografía C121) y pequeñas áreas de fósforo ternario eutéctico, conocido como esteadita (zonas blancas punteadas).

Zona periferia

• Forma y distribución de grafito

La

Micrografía C122, presenta láminas de grafito tipo B y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 5, como se presenta en la Micrografía C123. Clasificación: Grafito I B 5 UNE 36 117

• Tipo de matriz

En la Micrografía C124, se muestra una matriz perlítica y áreas con fase esteadita.

Defectos

- En la Micrografía C125, se pueden apreciar microporos del tipo cavidades de contracción, a lo largo de toda la sección de la pieza. Por otro lado, la cantidad de partículas de gran tamaño que aparece en toda la sección corresponden a sulfuros de manganeso, como se muestra en la
- Micrografía C126.

Micrografía C119. Distribución de las láminas de grafito tipo A y B, forma I. Estado de pulido (no atacado). 200X

Micrografía C120. Medidas de las láminas de grafito que corresponden a tamaños N°4 y N°5. Estado de pulido (no atacado). 137.08X

Micrografía C121. Hierro fundido en estado de colada. Matriz perlítica con áreas de esteadita. Mayoritariamente perlita fina. Atacada con 3% nital. 548.33X

Micrografía C122. Distribución de las láminas de grafito, no uniforme (tipo B). Estado de pulido (no atacada). 200X

Micrografía C123. Tamaño de las láminas de grafito N°5. Estado de pulido (no atacada). 137.08X

Micrografía C124. Hierro fundido en estado de colada. Grafito tipo B, en una matriz perlítica (zonas ocuras) con una muy pequeña cantidad de esteadita. Mayoritariamente perlita fina. Atacado con 3% nital. 548.33X

Micrografía C125. Tipo de defecto: microporos del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía C126. Sulfuros de manganeso, en toda la sección de la pieza. Estado de pulido (no atacada). 500X

7. Muestra 8

La muestra corresponde a un (01) trozo de plancha de cocina mejorada, tal como se muestra en la Figura C127.

Figura C127. Trozo de cocina mejorada, fabricado por Fundición Salinas

Zona central

• Forma y distribución de grafito

Esta muestra corresponde a un hierro gris hipoeutéctico con una distribución de láminas no uniformes de grafito tipo A y B, forma I, como se muestra en la Micrografía C128.

• Tamaño de grafito

En la Micrografía C129, se muestran algunas medidas de las láminas de grafito que corresponden a los N°s 4 y 5. Además, se muestra un grafito tamaño N°1.

Clasificación: Grafito I A 4/3 UNE 36 117

• Tipo de matriz

Esta muestra presenta una matriz predominantemente perlítica (zonas oscuras). Además, aparecen pequeñas áreas de fósforo ternario eutéctico o esteadita (ver Micrografía C130).

Zona periferia

• Forma y distribución de grafito

En la

Micrografía C131, se muestra la zona de la periferia de la probeta que presenta una distribución de grafito tipo B, es decir, rosetas que contienen grafito fino. La forma de las láminas corresponde a la forma I según UNE 36 117.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N°5 (ver Micrografía C132). Clasificación: Grafito I B 5 UNE 36 117

• Tipo de matriz

La matriz que presenta esta probeta es perlítica con esteadita, como se muestra en la Micrografía C133.

Defectos

- Existen dos tipos de defectos que aparecen a lo largo de toda la pieza: microporos del tipo cavidades de contracción y sulfuros de manganeso, como se muestra en la micrografía C169. Además, se presenta la forma irregular de una inclusión de escoria (ver
- Micrografía C134). Por último, a lo largo del borde la pieza se observan poros producidos por la reacción del carbono con el oxígeno, mostrado en la Micrografía C135.

Micrografía C128. Hierro gris hipoeutéctico, con una distribución de las láminas de grafito tipo A y B. Estado de pulido (no atacada). 200X

Micrografía C130. Hierro fundido en estado de colada, predomienantemente con matriz perlítica con esteadita. Hay perlita tanto fina como gruesa.Atacada con 3% nital. 548.33X

Micrografía C131. Láminas de grafito tipo B. Estado de pulido (no atacada). 200X

Micrografía C132.Tamaños de láminas de grafito N°5. Estado de pulido (no atacado). 137.08X

Micrografía C133. Hierro fundido en estado de cola. Matriz perlítia y pequeñas áreas de esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548.33X

Micrografía C134. Defectos del tipo microporos y sulfuros de manganeso en grafito tipo B. Estado de pulido (no atacada). 500X

Micrografía C135. Forma irregular que presenta una inclusión de escoria, en la zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C136. Poro producido por la reacción del carbono con el oxígeno, en la zona de la periferia de la pieza. Estado de pulido (no atacada). 137.08X

8. Muestra M9

Zona central

• Forma y distribución de grafito

En la

Micrografía C137, se muestran las láminas de grafito distribuidas aleatoriamente, pero no de manera uniforme, lo cual corresponde al grafito tipo A y tipo B. Ambos tipos de grafito tienen forma I.

- Tamaño de grafito
 - En la

Micrografía C138, se puede observar la diferencia de tamaños de las láminas de grafito, lo que causa la heterogeneidad en cuanto a las propiedades mecánicas. Los tamaños correspondientes a esta zona son N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Matriz perlítica rodeada por zonas ferritizadas y pocas cantidades de esteadita (ver Micrografía C139).

Zona intermedia

- Forma y distribución de grafito
 - La

Micrografía C140, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, forma I.

- Tamaño de grafito Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C141. Clasificación: Grafito I A/B 3 UNE 36 117
- Tipo de matriz La microestructura de la matriz es perlítica con algunas zonas ferritizadas y áreas de esteadita. Esto se puede apreciar en la Micrografía C142.

Zona periferia

- Forma y distribución de grafito La Micrografía C143, presenta láminas de grafito tipo A y B con forma I.
- Tamaño de grafito Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C144. Clasificación: Grafito I A/B 3 UNE 36 117
- Tipo de matriz En la Micrografía C145, se muestra una matriz perlítica, con zonas ferritizadas (áreas claras), y con esteadita (zonas blancas punteadas).

Defectos

• En la Micrografía C146, se pueden apreciar muchos microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas de sulfuros de manganeso, como se muestra en la Micrografía C147.

Micrografía C137. Láminas de grafito tipo A y tipo B. Estado de pulido (no atacada).

Micrografía C138. Tamaños de láminas de grafito N°2 y 3. Estado de pulido (no atacada). 137.08X

Micrografía C139. Hierro fundido en estado de colada. Matriz perlítica rodeado por zonas ferritizadas con muy poca esteadita. Hay perlita tanto fina como gruesa. Atacada con 3% nital. 548.33X

Micrografía C140. Láminas de grafito tipo A y tipo B. Estado de pulido (no atacada). 200X

Micrografía C141. Tamaños de láminas de grafito N°3. Estado de pulido (no atacada). 137.08X

Micrografía C142. Hierro fundido en estado de colada. Matriz perlítica rodeade por zonas ferritizadas con muy poca esteadita. Hay tanto perlita fina como gruesa .Atacada con 3% nital. 548.33X

Micrografía C143. Láminas de grafito tipo A y tipo B. Estado de pulido (no atacada). 200X

Micrografia C145. Hierro fundido en estado de colada. Matriz perlítica rodeade por zonas ferritizadas con muy poca esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548.33X

Micrografía C146. Microporos del tipo cavidades de contracción en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C147. Partículas pequeñas de sulfuros de manganeso. Estado de pulido (no atacado). 500X

Taller 5

9. Muestra 11:

Zona central

• Forma y distribución de grafito

La Micrografía C148, muestra un hierro gris hipoeutéctico con una distribución no uniforme de las láminas de grafito tipo A y B forma I.

• Tamaño de grafito

En la Micrografía C149, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños N°s 2 y 3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Matriz predominantemente perlítica y pequeñas áreas de fósforo ternario eutéctico, esteadita (ver Micrografía C150).

Zona intermedia

• Forma y distribución de grafito

La

Micrografía C151, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, y forma I.

• Tamaño de grafito

Las medidas de las láminas de grafito corresponden a tamaño N° 2 y N° 3, como se presenta en la Micrografía C152.

Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con presencia de áreas de esteadita (ver Micrografía C153).

Zona periferia

- Forma y distribución de grafito
 - La

Micrografía C154, presenta láminas de grafito tipo A y B. Ambos tipos con forma I.

• Tamaño de grafito

Los tamaños de las láminas de grafito corresponden a N° 2 y N° 3, como se presenta en la Micrografía C155, predominantemente tamaño N°3 y 4. Clasificación: Grafito I A/B 3/4 UNE 36 117

• **Tipo de matriz** En la Micrografía C156, se muestra una matriz perlítica con esteadita (zonas blancas punteadas).

Defectos

• En la Micrografía C157, se pueden apreciar muchos microporos del tipo cavidades de contracción, preferentemente en la zona central. Sin embargo, este tipo de defecto aparece a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas de gran

tamaño, las cuales corresponden a sulfuros de manganeso, como se muestra en la

• Micrografía C158.

Micrografía C148. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 200X

Micrografía C149. Medidas de las láminas de grafito que corresponden a tamaños N°2 y N°3. Estado de pulido (no atacada). 137,08X

Micrografía C150. Hierro fundido en estado de colada. Matriz predominantemente perlítica y esteadita. Hay perlita tanto fina como gruesa. Atacada con 3% nital. 548,33X

Micrografía C151. Hierro fundido con láminas de grafito tipo A y B (rosetas) y forma I. Estado de pulido (no atacada). 200X

Micrografía C152. Medidas de las láminas de grafito que corresponde al tamaño N°2 y N°3. Estado de pulido (no atacada). 137,08X

Micrografía C153. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548,33X

Micrografía C154. Hierro gris que presenta una distribución de láminas de grafito tipo A y B. Estado de pulido (no atacada). 200X

Micrografía C155. Láminas de grafito de tamaños predominantemente N°s 3 y 4. Estado de pulido (no atacada). 137,08X

Micrografía C156. Hierro gris en estado de colada. Matriz perlítica y esteadita. Hay perlita tanto fina como gruesa. Atacada con 3% nital. 548,33X

Micrografía C157. Microporos del tipo cavidades de contracción a lo largo de toda la zona transversal de la barra. Estado de pulido (no atacada). 137,08X

Micrografía C158. Gran cantidad de sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacado). 500X

10. Muestra M12:

Zona central

- Forma y distribución de grafito La Micrografía C159, muestra un hierro gris hipoeutéctico con una distribución no uniforme de las láminas de grafito tipo A y B forma I.
- Tamaño de grafito
 En la Micrografía C160, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de las láminas N° 2 y N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117
- Tipo de matriz

Matriz predominantemente perlítica ferritizada y pequeñas áreas de fósforo ternario eutéctico, esteadita (ver Micrografía C161).

Zona intermedia

• Forma y distribución de grafito

La

Micrografía C162, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, y forma I.

 Tamaño de grafito Las medidas de las láminas de grafito corresponden a tamaño N° 2, y N°3, como se presenta en la Micrografía C163. Clasificación: Grafito I A/B 2/3 UNE 36 117 • Tipo de matriz

La microestructura de la matriz es perlítica ligeramente ferritizada con presencia de áreas de esteadita (ver Micrografía C164).

Zona periferia

• Forma y distribución de grafito La

Micrografía C165, presenta láminas de grafito tipo B con forma I.

• Tamaño de grafito

Los tamaños de las láminas de grafito corresponden a N° 3 y N° 4, como se presenta en la Micrografía C166, predominantemente tamaño N°3. Clasificación: Grafito I A/B 3/ 4 UNE 36 117

• Tipo de matriz

En la Micrografía C167, se muestra una matriz perlítica ligeramente ferritizada con poca presencia de esteadita (zonas blancas punteadas).

Defectos

- En la
- Micrografía C168, se pueden apreciar muchos microporos del tipo cavidades de contracción, preferentemente en la zona central. Sin embargo, este tipo de defecto aparece a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas sulfuros de manganeso, como se muestra en la
- Micrografía C169.

Micrografía C159. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 137,08X

Micrografía C160. Medidas de las láminas de grafito que corresponden a tamaños N°2 y N°3. Estado de pulido (no atacada). 137,08X

Micrografía C161. Hierro fundido en estado de colada. Matriz predominantemente

perlítica ligeramente ferritizada y en menor cantidad esteadita. Hay perlita tanto fina como gruesa. Atacada con 3% nital. 548,33X

Micrografía C162. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 137,08X

Micrografía C163. Medidas de las láminas de grafito que corresponden a tamaños N°2 y N°3. Estado de pulido (no atacada). 137,08X

Micrografía C164. Hierro fundido en estado de colada. Matriz predominantemente perlítica ligeramente ferritizada y en menor cantidad esteadita. Hay perlita tanto gruesa como fina.Atacada con 3% nital. 548,33X

Micrografía C165. Láminas de grafito tipo A/B, forma I. Estado de pulido (no atacada). 200X

Micrografía C166. Medidas de las láminas de grafito que corresponden a tamaños N°3 y N°4. Estado de pulido (no atacada). 137,08X

Micrografía C167. Hierro fundido en estado de colada. Matriz predominantemente perlítica ligeramente ferritizada y en menor cantidad esteadita. Hay perlita tanto fina como gruesa. Atacada con 3% nital. 548,33X

Micrografía C168.Microporos del tipo cavidades de contracción a lo largo de toda la zona transversal de la barra. Estado de pulido (no atacada). 137,08X

Micrografía C169.Gran cantidad de sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacado). 500X.

Taller 6

11. Muestra 14

Zona central

• Forma y distribución de grafito

La

Micrografía C170, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito orientadas aleatoriamente, tipo A y tipo B, y forma I.

• Tamaño de grafito

En la

Micrografía C171, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de láminas de grafito N°3. Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz totalmente perlítica con pequeñas áreas de esteadita (ver Micrografía C172).

Zona periferia

• Forma y distribución de grafito La

Micrografía C173, presenta láminas de grafito tipo A con algunas formaciones de rosetas tipo B y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño mayoritariamente N° 3 y N° 4, como se presenta en la

Micrografía C174. En esta zona se encuentran grafitos de mayor tamaño y más dispersos.

Clasificación: Grafito I A/B 3/4 UNE 36 117

• Tipo de matriz

El hierro fundido presenta una microestructura con matriz perlítica y áreas de esteadita (ver

Micrografia C175).

Defectos

- En la Micrografía C176, se pueden apreciar algunos del tipo cavidades de contracción a lo largo de toda la sección de la pieza.
- Además, otro tipo de defecto que aparece en toda la muestra, es la cantidad de partículas de gran tamaño, las cuales corresponden a sulfuros de manganeso, como se muestra en la Micrografía C177.
- Por último, en la Micrografía C178, se puede observar la forma esférica que presenta un defecto tipo poro producido por la reacción del carbono con el oxígeno y con segregaciones de sulfuros de manganeso a su alrededor.

Micrografía C170. Hierro hipoeutéctico con una distribución de láminas de grafito tipo A y B, y forma I. Zona central. Estado de pulido (no atacada). 200X

Micrografía C171. Tamaños de láminas de grafito N°3. Zona central. Estado de pulido (no atacada). 548,33X

Micrografía C172. Hierro gris en estado de colada. Matriz perlítica y pequeñas áreas de esteadita. Zona central. Hay perlita mayoritariamente fina. Atacada con 3% nital. 548.33X

Micrografía C173. Láminas de grafito tipo A con algunas formaciones de rosetas tipo B. Zona periferia. Estado de pulido (no atacada). 200X

Micrografía C174. Láminas de grafito con tamaños N°3 y N°4. Zona periferia. Estado de pulido (no atacado). 548,33X

Micrografía C175. Hierro fundido en estado de colada. Perlita mayoritariamente fina. Matriz perlítica con áreas de esteadita. Atacada con 3% nital. 548,33X

Micrografía C176. Pocos microporos del tipo cavidades de contracción, en toda la sección de la pieza. Estado de pulido (no atacada). 137,08X

Micrografía C177. Pequeñas cantidades de sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacada). 500X

Micrografía C178. Defecto tipo poro debido a la reacción del monóxido de carbono (CO). Estado de pulido (no atacada) 548,33X

12. Muestra 15

Zona central

• Forma y distribución de grafito La

Micrografía C179, muestra láminas de grafito tipo A y B, forma I.

• Tamaño de grafito

Los tamaños de las láminas de grafito tienen medidas que corresponden a tamaños N°2 y N°3, algunas de estas medidas se presentan en la Micrografía C180. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La Micrografía C181, muestra la microestructura de la matriz que es perlítica, con presencia de esteadita.

Zona intermedia

• Forma y distribución de grafito La

Micrografía C182, muestra láminas de grafito tipo A y B, forma I.

• Tamaño de grafito

Los tamaños de las láminas de grafito tienen medidas que corresponden a tamaños N°2 y N°3, este último en mayor cantidad (ver Micrografía C183). Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La Micrografía C184, muestra la microestructura de la matriz que es perlítica con zonas ligeramente ferritizadas, con presencia de esteadita

Zona periferia

• Forma y distribución de grafito

En la

Micrografía C185, presenta láminas de grafito (forma I), con una distribución tipo A y B.

• Tamaño de grafito

Las medidas de grafito corresponden a tamaños $N^{\circ}3$ (ver Micrografía C186).

Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La Micrografía C187, muestra la microestructura de la matriz que es perlítica con zonas ligeramente ferritizadas, con presencia de esteadita.

Defectos

- En la Micrografía C188, se pueden apreciar algunos del tipo cavidades de contracción a lo largo de toda la sección de la pieza.
- Además, otro tipo de defecto son los sulfuros de manganeso que aparecen a lo largo de toda la sección de la pieza (ver Micrografía C189).

Micrografía C179. Láminas de grafito con distribución tipo A y B, forma I. Zona central. Estado de pulido (no atacado). 200X

Micrografía C180. Tamaños de grafito que corresponden a N°2 y N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C181. Matriz perlítica con zonas pequeñas de esteadita. Hay tanto perlita fina como perlita gruesa. Atacado con 3% Nital. 548.33X

Micrografía C182. Láminas de grafito (forma I), con una distribución tipo A y B. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C183. Tamaños de las láminas de grafito correspondientes a N°2 y N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C184. Matriz predominantemente perlítica con zonas ligeramente ferritizadas y áreas de esteadita. Hay mayoritariamente perlita gruesa. Atacado con 3% Nital. 548.33X

Micrografía C185. Láminas de grafito (forma I), con una distribución tipo A y B. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C186. Tamaños de las láminas de grafito correspondientes a N°3. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C187. Matriz predominantemente perlítica con zonas ferritizadas y pequeñas áreas de esteadita. Hay tanto perlita fina como gruesa. Atacado 3% Nital. 548.33X

Micrografía C188. Defecto del tipo cavidades de contracción en toda la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C189. Defecto del tipo sulfuros de manganeso en toda la sección transversal de la pieza. Estado de pulido (no atacado). 500X

13. Muestra M16

Zona central

• Forma y distribución de grafito

La

Micrografía C190, muestra láminas de grafito tipo A y B, forma I.

• Tamaño de grafito

Los tamaños de las láminas de grafito tienen medidas que corresponden a tamaños N°3, algunas de estas medidas se presentan en la Micrografía C191.

Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La Micrografía C192, muestra la microestructura de la matriz que es perlítica, con presencia de esteadita.

Zona intermedia

- Forma y distribución de grafito La Micrografía C193, muestra láminas de grafito tipo A y B, forma I.
- Tamaño de grafito

Los tamaños de las láminas de grafito tienen medidas que corresponden a tamaños N°3 (ver Micrografía C194).

Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La Micrografía C195, muestra la microestructura de la matriz que es perlítica, con presencia de esteadita

Zona periferia

• Forma y distribución de grafito

En la Micrografía C196, presenta láminas de grafito (forma I), con una distribución tipo A y B.

• Tamaño de grafito

Las medidas de grafito corresponden a tamaños N°3 y N°4 (ver Micrografía C197).

Clasificación: Grafito I A/B 3/4 UNE 36 117

• Tipo de matriz

La Micrografía C198, muestra la microestructura de la matriz que es perlítica, con presencia de esteadita.

Defectos

• En la Micrografía C199, se pueden apreciar algunos microporos a lo largo de toda la sección de la pieza. Además, otro tipo de defecto son los sulfuros de manganeso que aparecen a lo largo de toda la sección de la pieza (ver Micrografía C200).

Micrografía C190. Láminas de grafito (forma I), con distribución tipo A y B. Zona central. Estado de pulido (no atacado). 200X

Micrografía C191. Tamaños de las láminas de grafito que corresponden a N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C192. Matriz perlítica con zonas de esteadita. Hay perlita tanto fina como gruesa .Zona central. Atacado con 3% Nital. 548.33X

Micrografía C193. Láminas de grafito (forma I), con una distribución tipo A y B. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C194. Tamaños de las láminas de grafito correspondientes a N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C195. Matriz perlítica con abundantes áreas de esteadita. Hay predominantemente perlita fina .Zona intermedia. Atacado con 3% Nital. 548.33X

Micrografía C196. Láminas de grafito (forma I), con una distribución tipo A y B. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C197. Tamaños de las láminas de grafito que corresponden a N°3. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C198. Matriz perlítica con abundantes zonas de esteadita. Hay mayoritariamente perlita fina. Zona periferia. Atacado con 3% Nital. 548.33X

Micrografía C199. Defecto del tipo microporos en toda la sección de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C200. Sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacado). 500X

Taller 7

14. Muestra 17:

Zona central

• Forma y distribución de grafito

La

Micrografía C201, muestra un hierro gris hipoeutéctico con una distribución no uniforme de las láminas de grafito tipo A y B, y forma I.

• Tamaño de grafito

En la Micrografía C202, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños N°s 2 y 3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Matriz predominantemente perlítica y pequeñas áreas de fósforo ternario eutéctico, esteadita (ver

Micrografía C203).

Zona intermedia

• Forma y distribución de grafito La

Micrografía C204, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, y forma I.

• Tamaño de grafito

Las medidas de las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C205. Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica ligeramente ferritizada con presencia de áreas de esteadita (ver Micrografía C206).

Zona periferia

• Forma y distribución de grafito

La

Micrografía C207, presenta láminas de grafito tipo A y B. Ambos tipos con forma I.

• Tamaño de grafito

Los tamaños de las láminas de grafito corresponden a N° 3 y N° 4, como se presenta en la Micrografía C208. Clasificación: Grafito I A/B 3/4 UNE 36 117

• Tipo de matriz

En la Micrografía C209, se muestra una matriz perlítica ligeramente ferritizada con esteadita (zonas blancas punteadas).

Defectos

• En la Micrografía C210, se pueden apreciar muchos microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. Otro

defecto importante es la cavidad de contracción rellena de escoria en la zona central de la pieza. Por último, partículas de sulfuros de manganeso en toda la sección, como se muestra en la

• Micrografía C211.

Micrografía C201. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 200X

Micrografía C202. Medidas de las láminas de grafito que corresponden a tamaños N°s 2 y 3. Estado de pulido (no atacada). 137,08X

Micrografía C203. Hierro fundido en estado de colada. Matriz predominantemente perlítica y esteadita. Mayoritariamente perlita gruesa. Atacada con 3% nital. 548,33X

Micrografía C204. Hierro fundido con láminas de grafito tipo A y B (rosetas) y forma I. Estado de pulido (no atacada). 200X

Micrografía C205. Medidas de las láminas de grafito que corresponde al tamaño N°3. Estado de pulido (no atacada). 137,08X

Micrografía C206. Hierro fundido en estado de colada. Matriz perlítica ligeramente ferritizada con esteadita. Mayoritariamente perlita gruesa. Atacada con 3% nital. 548,33X

Micrografía C207. Hierro gris que presenta una distribución de láminas de grafito tipo A y B. Estado de pulido (no atacada). 200X

Micrografía C208. Láminas de grafito de tamaños predominantemente N°s 3 y 4. Estado de pulido (no atacada). 137,08X

Micrografía C209. Hierro gris en estado de colada. Matriz perlítica ferritizada y esteadita. Hay tanto perlita fina como perlita gruesa. Atacada con 3% nital. 548,33X

Micrografía C210. Microporos del tipo cavidades de contracción a lo largo de toda la zona transversal de la barra. Estado de pulido (no atacada). 137,08X

Micrografía C211. Cavidad de contracción en la zona central de la barra. Estado de pulido (no atacada). 137,08X

Micrografía C212. Gran cantidad de sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacado). 500X

Taller 8

15. Muestra M19

Zona central

• Forma y distribución de grafito

En la Micrografía C213, se muestran las láminas de grafito distribuidas aleatoriamente, pero no de manera uniforme, lo cual corresponde al grafito tipo A y tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la

Micrografía C214, se puede observar la diferencia de tamaños de las láminas de grafito, lo que causa la heterogeneidad en cuanto a las propiedades mecánicas. Los tamaños correspondientes a esta zona son N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Matriz perlítica rodeada por zonas ferritizadas y pocas cantidades de esteadita (ver

Micrografia C215).

Zona intermedia

• Forma y distribución de grafito

La Micrografía C216, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 2 y N° 3, como se presenta en la Micrografía C217. Clasificación: Grafito I A 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con algunas zonas ferritizadas y áreas de esteadita. Esto se puede apreciar en la Micrografía C218.

Zona periferia

• Forma y distribución de grafito

La

Micrografía C219, presenta láminas de grafito tipo B con forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 4, como se presenta en la Micrografía C220. Clasificación: Grafito I B 4 UNE 36 117

• Tipo de matriz

En la Micrografía C221, se muestra una matriz perlítica, con zonas ferritizadas (áreas claras), y con esteadita (zonas blancas punteadas).

Defectos

• En la micrografía C182, se pueden apreciar muchos microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas de sulfuros de manganeso, como se muestra en la micrografía C183.

Micrografía C213. Láminas de grafito tipo A y tipo B. Estado de pulido (no atacada). 200X

Micrografía C214. Tamaños de láminas de grafito N°2 y 3. Estado de pulido (no atacada). 137.08X

Micrografía C215. Hierro fundido en estado de colada. Matriz perlítica rodeade por zonas ferritizadas con muy poca esteadita. Hay perlita tanto gruesa como fina.Atacada con 3% nital. 548.33X

Micrografía C216. Hierro fundido en estado de colada. Matriz perlítica rodeade por zonas ferritizadas con muy poca esteadita. Atacada con 3% nital. 200X

Micrografía C217. Medidas de las láminas de grafito tipo A, que corresponde a los tamaños N°2 y N°3. Estado de pulido (no atacada). 137.08X

Micrografía C218. Hierro fundido en estado de colada. Matriz perlítica con zonas ferritizadas y con mayor contenido de esteadita. Hay perlita tanto gruesa como fina. Atacada con 3% nital. 548.33X

Micrografía C219. Láminas de grafito tipo B. Estado de pulido (no atacado). 200X

Micrografía C220. Tamaños de láminas de grafito N°4. Estado de pulido (no atacado). 137.08X

Micrografía C221. Hierro gris en estado de colada. Matriz perlítica con zonas ferritizadas y esteadita. Hay perlita tanto gruesa como fina. Atacado con 3% nital. 548.33X

Micrografía C222. Microporos del tipo cavidades de contracción en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C223. Partículas pequeñas de sulfuros de manganeso. Estado de pulido (no atacado). 500X

16. Muestra M20

Zona central

• Forma y distribución de grafito

En la Micrografía C224, se muestran las láminas de grafito distribuidas aleatoriamente, pero no de manera uniforme, lo cual corresponde al grafito tipo A y tipo E. Ambos tipos de grafito tienen forma I.

- Tamaño de grafito
 - En la

Micrografía C225 se puede observar la diferencia de tamaños de las láminas de grafito, lo que causa la heterogeneidad en cuanto a las propiedades mecánicas. Los tamaños correspondientes a esta zona son N°s 2 y 3. Clasificación: Grafito I A/E 2/3 UNE 36 117

• Tipo de matriz

Matriz perlítica rodeada por zonas ferritizadas y pocas cantidades de esteadita (ver Micrografía C226).

Zona intermedia

• Forma y distribución de grafito

La

Micrografía C227, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, forma I.

• Tamaño de grafito
Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C228. Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con algunas zonas ferritizadas y áreas de esteadita. Esto se puede apreciar en la Micrografía C229.

Zona periferia

- Forma y distribución de grafito
- La Micrografía C230, presenta láminas de grafito tipo A y B con forma I.
- Tamaño de grafito Las láminas de grafito corresponden a tamaño N° 3 y 4, como se presenta en la Micrografía C231. Clasificación: Grafito I A/B 3/4 UNE 36 117
- Tipo de matriz

En la

Micrografía C232, se muestra una matriz perlítica, con zonas ferritizadas (áreas claras), y con esteadita (zonas blancas punteadas).

Defectos

• En la Micrografía C233, se pueden apreciar muchos microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas de sulfuros de manganeso, como se muestra en la Micrografía C234

Micrografía C224. Láminas de grafito tipo A y tipo E. Estado de pulido (no atacada). 200X

Micrografía C225. Tamaños de láminas de grafito N°2 y 3. Estado de pulido (no atacada). 137.08X

Micrografía C226. Hierro fundido en estado de colada. Matriz perlítica rodeade por zonas ferritizadas con muy poca esteadita. Hay tanto perlita fina como gruesa. Atacada con 3% nital. 548.33X

Micrografía C227. Láminas de grafito tipo A y B forma I. Estado de pulido (no atacada). 200X

Micrografía C228. Medidas de las láminas de grafito que corresponde a los tamaños N°3. Estado de pulido (no atacada). 137.08X

Micrografía C229. Hierro fundido en estado de colada. Matriz perlítica con zonas ferritizadas y con mayor contenido de esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548.33X

Micrografía C230. Láminas de grafito tipo A y B. Estado de pulido (no atacado). 200X

Micrografía C231. Tamaños de láminas de grafito N°3 y 4. Estado de pulido (no atacado). 137.08X

Micrografía C232. Hierro gris en estado de colada. Matriz perlítica con zonas ferritizadas y esteadita. Hay mayoritariamente perlita fina. Atacado con 3% nital. 548.33X

Micrografía C233. Microporos del tipo cavidades de contracción en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C234. Partículas pequeñas de sulfuros de manganeso. Estado de pulido (no atacado). 500X

Zona central

• Forma y distribución de grafito En la

Micrografía C235, se muestran las láminas de grafito distribuidas aleatoriamente, pero no de manera uniforme, lo cual corresponde al grafito tipo A y tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la Micrografía C236, se puede observar la diferencia de tamaños de las láminas de grafito, lo que causa la heterogeneidad en cuanto a las propiedades mecánicas. Los tamaños correspondientes a esta zona son N°s 2 y 3.

Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz Matriz perlítica rodeada por zonas ferritizadas y zonas con esteadita (ver Micrografía C237).

Zona intermedia

• Forma y distribución de grafito

La

Micrografía C238, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C239.

Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con algunas zonas ferritizadas y áreas de esteadita. Esto se puede apreciar en la Micrografía C240.

Zona periferia

- Forma y distribución de grafito La
 - Micrografía C241, presenta láminas de grafito tipo A y B con forma I.
- Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3 y 4, como se presenta en la Micrografía C242.

Clasificación: Grafito I A/B 3/4 UNE 36 117

- Tipo de matriz
 - En la

Micrografía C243, se muestra una matriz perlítica, con zonas ferritizadas (áreas claras), y con esteadita (zonas blancas punteadas).

Defectos

- En la
- Micrografía C244, se pueden apreciar muchos microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas de sulfuros de manganeso, como se muestra en la micrografía C184.

Micrografía C235. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 200X

Micrografía C236. Tamaños de láminas de grafito N°2 y 3. Estado de pulido (no atacada). 137.08X

Micrografía C237. Hierro fundido en estado de colada. Matriz perlítica rodeada por zonas ferritizadas con muy poca esteadita. Hay tanto perlita fina como gruesa. Atacada con 3% nital. 548.33X

Micrografía C238. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 200X

Micrografía C239. Medidas de las láminas de grafito tipo A, que corresponde al tamaño N°3. Estado de pulido (no atacada). 137.08X

Micrografía C240. Hierro fundido en estado de colada. Matriz perlítica con zonas ferritizadas y con mayor contenido de esteadita. Hay tanto perlita fina como gruesa. Atacada con 3% nital. 548.33X

Micrografía C241. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 200X

Micrografía C242. Tamaños de láminas de grafito N°3 y 4. Estado de pulido (no atacado). 137.08X

Micrografía C243. Hierro gris en estado de colada. Matriz perlítica con zonas ferritizadas y esteadita. Hay mayoritariamente perlita fina. Atacado con 3% nital. 548.33X

Micrografía C244. Microporos del tipo cavidades de contracción en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C184. Partículas pequeñas de sulfuros de manganeso. Estado de pulido (no atacado). 500X

Zona central

• Forma y distribución de grafito

En la Micrografía C245, se muestran las láminas de grafito distribuidas aleatoriamente, pero no de manera uniforme, lo cual corresponde al grafito tipo A y tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la Micrografía C246, se puede observar la diferencia de tamaños de las láminas de grafito, lo que causa la heterogeneidad en cuanto a las propiedades mecánicas. Los tamaños correspondientes a esta zona son N°s 2 y 3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Matriz perlítica rodeada por zonas ferritizadas y pocas cantidades de esteadita (ver

Micrografia C247).

Zona intermedia

• Forma y distribución de grafito La

Micrografía C248, muestra la misma probeta, en la zona intermedia, donde se aprecia grafito laminar tipo A y B, forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 2 y N° 3, como se presenta en la

Micrografía C249. Clasificación: Grafito I A 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con algunas zonas ferritizadas y áreas de esteadita. Esto se puede apreciar en la Micrografía C250.

Zona periferia

• Forma y distribución de grafito La

Micrografía C251, presenta láminas de grafito tipo A y B con forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C252. Clasificación: Grafito I A/B 3 UNE 36 117

• **Tipo de matriz** En la Micrografía C253, se muestra una matriz perlítica, con zonas ferritizadas (áreas claras), y con esteadita (zonas blancas punteadas).

Defectos

- En la
- Micrografía C254, se pueden apreciar muchos microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. Otro defecto que aparece en toda la pieza, es la cantidad de partículas de sulfuros de manganeso, como se muestra en la
- Micrografía C255.

Micrografía C245. Láminas de grafito tipo A y tipo B. Estado de pulido (no atacada). 200X

Micrografía C246. Tamaños de láminas de grafito N°2 y 3. Estado de pulido (no atacada). 137.08X

Micrografia C247. Hierro fundido en estado de colada. Matriz perlítica rodeade por zonas ferritizadas con muy poca esteadita. Hay tanto perlita fina como gruesa. Atacada con 3% nital. 548.33X

Micrografía C248. Láminas de grafito tipo A y B, forma I. Estado de pulido (no atacada). 200X

Micrografía C249. Medidas de las láminas de grafito tipo A, que corresponde a los tamaños N°2 y N°3. Estado de pulido (no atacada). 137.08X0

Micrografía C250. Hierro fundido en estado de colada. Matriz perlítica con zonas ferritizadas y con mayor contenido de esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548.33X

Micrografía C251. Láminas de grafito tipo A y B. Estado de pulido (no atacado). 200X

Micrografía C252. Tamaños de láminas de grafito N°3. Estado de pulido (no atacado). 137.08X

Micrografía C253. Hierro gris en estado de colada. Matriz perlítica con zonas ferritizadas y esteadita. Hay tanto perlita fina como gruesa. Atacado con 3% nital. 548.33X

Micrografía C254. Microporos del tipo cavidades de contracción en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C255. Partículas pequeñas de sulfuros de manganeso. Estado de pulido (no atacado). 500X

Zona central

• Forma y distribución de grafito

La

Micrografía C256, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito tipo A y B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la

Micrografía C257, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de láminas N°2 y N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es predominantemente perlítica. Además, en la

Micrografía C258, aparecen pequeñas áreas de esteadita.

Zona intermedia

• Forma y distribución de grafito

La distribución presentada en la

Micrografía C259, es menos uniforme que en la zona central, pero con los mismos tipos de grafito (tipo A y tipo B), ambos de forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N°3, como se presenta en la Micrografía C260. Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con presencia de esteadita en menor cantidad que en la zona central (ver Micrografía C261).

Zona periferia

• Forma y distribución de grafito

La

Micrografía C262, presenta láminas de grafito tipo A, con mayor cantidad de rosetas que corresponden a la distribución tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

Las láminas de grafito corresponden al tamaño N°3, como se presenta en la Micrografía C263.

Clasificación: Grafito I A/B 3 UNE 36 117

- Tipo de matriz
 - En la

Micrografía C264, se muestra una matriz perlítica, con esteadita (zonas blancas punteadas)

Defectos

- La
- Micrografía C265 muestra un defecto tipo poro, por cavidades de contracción, que aparece a lo largo de toda la pieza, al igual que los sulfuros de manganeso, que se muestran en la
- Micrografía C266.

Micrografía C256. Hierro hipoeutéctico con láminas de grafito tipo A y B, forma I. Zona central. Estado de pulido (no atacada). 200X

Micrografía C257. Tamaño de las láminas de grafito N°2 y N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C258. Láminas de grafito tipo A y B, forma I. Zona intermedia. Hay tanto perlita fina como gruesa. Estado de pulido (no atacado). 137.08X

Micrografía C259. Hierro en estado de colada. Matriz perlítica con esteadita. Zona central. Atacada con 3% Nital. 200X

Micrografía C260. Medidas de los tamaños de grafito que corresponden al N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C261. Hierro en estado de colada. Matriz perlítica con esteadita. Hay mayoritariamente perlita gruesa. Zona central. Atacada con 3% Nital. 548.33X

Micrografía C262. Láminas de grafito tipo A y B. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C263.Medidas de los tamaños de grafito que corresponden al N°3. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C264. Hierro en estado de colada. Matriz perlítica con esteadita. Zona intermedia. Hay tanto perlita fina como gruesa. Atacada con 3% Nital. 548.33X

Micrografía C265. Microporos del tipo cavidades de contracción. Estado de pulido (no pulido). 137.08X

Micrografía C266. Partículas de sulfuro de manganeso. Estado de pulido (no atacado). 500X

Zona central

• Forma y distribución de grafito

La

Micrografía C267, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito tipo A y orientadas en forma de rosetas, tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la

Micrografía C268, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de láminas N°2 y N°3. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz perlítica con presencia de esteadita (ver Micrografía C269).

Zona intermedia

• Forma y distribución de grafito La

Micrografía C270, muestra láminas de grafito tipo A y B y forma I.

- Tamaño de grafito
 Las láminas de grafito corresponden a tamaños N°2 y N°3, como se
 presenta en la
 Micrografía C271. Clasificación: Grafito I A/B 2/3 UNE 36 117
- Tipo de matriz

La microestructura de la matriz es perlítica con presencia de esteadita (ver Micrografía C272)

Zona periferia

• Forma y distribución de grafito

La

Micrografía C273, presenta láminas de grafito tipo B, forma I.

• Tamaño de grafito

Las láminas de grafito corresponden al tamaño N°4, como se presenta en la Micrografía C274. Clasificación: Grafito I B 4 UNE 36 117

• **Tipo de matriz** En la

Micrografía C275, se muestra una matriz perlítica, con esteadita (zonas blancas punteadas).

Defectos

• En la micrografía C237, se pueden apreciar muchos microporos del tipo cavidades de contracción, a lo largo de toda la sección de la pieza. Además, en la micrografía C238, aparecen partículas de sulfuros de manganeso.

Micrografía C267. Forma I y distribución de las láminas de grafito tipo A y B. Zona central. Estado de pulido (no atacado). 200X

Micrografía C268. Tamaños de grafíto N°2 y N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C269. Hierro fundido en estado de colada. Matriz predominatemente perlítica con esteadita. Zona central. Hay mayoritariamente perlita gruesa. Atacado con 3% Nital. 548.33X

Micrografía C270. Forma I y distribución de las láminas de grafito tipo A y B. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C271. Tamaños de láminas de grafito N°2 y N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C272. Hierro en estado de colada. Matriz predominantemente perlítica con esteadita. Zona intermedia. Hay mayoritariamente perlita gruesa. Atacado con 3% Nital. 548.33X

Micrografía C273. Distribución de las láminas de grafito tipo B y forma I. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C274. Tamaño de grafito N°4. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C275. Hierro gris en estado de colada. Matriz perlítica con esteadita (áreas blancas punteadas). Hay tanto perlita fina como gruesa. Atacada con 3% Nital. 548.33X

Micrografía C276. Microporo del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía C277. Partículas de sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacado). 500X

Zona central

• Forma y distribución de grafito

La

Micrografía C278, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito tipo A y tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

Esta zona presenta tamaños de grafito N°2 y 3, como se muestra en la Micrografía C279. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

Se muestra la microestructura de un hierro gris con matriz perlítica. Además, se observan áreas con esteadita.

Zona periferia

• Forma y distribución de grafito

La

Micrografía C280, presenta láminas de grafito tipo A y tipo E, es decir, láminas de grafito que se encuentran en regiones interdendríticas con orientación preferida, y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N°2 y N°3, como se presenta en la

Micrografía C281. Clasificación: Grafito I A/E 2/3 UNE 36 117

• Tipo de matriz

La matriz que presenta esta probeta es perlítica con esteadita (zonas blancas punteadas), como se muestra en la Micrografía C282.

Defectos

• En la micrografía C35, se pueden apreciar muchos microporos del tipo cavidades de contracción y sulfuros de manganeso, como se muestra en la micrografía C36.

Micrografía C278.Distribución de las láminas de grafito tipo A y tipo B y forma I. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C279. Láminas de grafito con tamaño N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C280. Hierro fundido hipoeutéctico con distribución de las láminas de grafito tipo A/E. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C281. Hierro fundido con láminas de grafito N° 2 y N°3. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C282. Matriz perlítica con algunas zonas de esteadita. Zona periferia. Hay tanto perlita fina como gruesa. Atacado con 3% Nital. 548.33X

Micrografía C283. Microporos en toda la sección de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía C284. Sulfuros de manganeso, que aparecen en toda la sección transversal de la barra. Estado de pulido (no atacado). 500X

22. Muestra M26

Zona central

- Forma y distribución de grafito El hierro gris mostrado en la Micrografía C285, presenta una distribución tipo A y tipo B, con forma I.
- Tamaño de grafito Esta zona presenta tamaños de grafito N°2 y 3, como se muestra en la Micrografía C286. Clasificación: Grafito I A/B 2/3 UNE 36 117
- Tipo de matriz

La microestructura de la matriz predominantemente perlítica. Además, en la Micrografía C287, aparecen pequeñas áreas de esteadita.

Zona periferia

• Forma y distribución de grafito

Las láminas de grafito mostradas en la Micrografía C288, presentan orientación preferente, y en regiones interdendríticas, lo cual corresponde a grafito forma I y tipo A/E.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C289. Clasificación: Grafito I A/E 3 UNE 36 117

• Tipo de matriz

En la micrografía C42, se muestra una matriz perlítica, con esteadita.

Defectos

- En la
- Micrografía C290 se pueden apreciar microporos del tipo cavidades de contracción a lo largo de toda la sección de la pieza. También, se presentan en la

• Micrografía C291, sulfuros de manganeso en muy pocas cantidades en comparación con las otras muestras obtenidas del mismo fabricante (muestras M23, M24 y M25).

Micrografía C285. Láminas de grafito, tipo A y B. Zona central. Estado de pulido (no atacado). 200X

Micrografía C286. Láminas de grafito, de tamaño N° 2 y N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C287. Matriz perlítica y pequeñas áreas de esteadita. Zona central. Hay tanto perlita fina como gruesa. Estado de pulido (no atacado). 548.33X

Micrografía C288. Distribución de láminas de grafito tipo A y E. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C289. Láminas de grafito tipo A y B. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C290. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Zona periferia. Hay mayoritariamente perlita gruesa. Atacado con 3% Nital. 548.33x

Micrografía C291. Láminas de grafito con defectos de microporos del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía C292. Sulfuros de manganeso. Estado de pulido (no atacado). 500X

23. Muestra M27

Zona central

• Forma y distribución del grafito

La

Micrografía C293 muestra un hierro gris con una distribución de láminas de grafito tipo A y B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

En la

Micrografía C296, se muestran algunas medidas de las láminas de grafito. Los tamaños de las láminas de grafito en la zona central corresponden mayoritariamente a N°2, aunque también hay tamaños N°3 en menor cantidad. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La matriz es predominantemente perlítica con zonas levemente ferritizadas, con pequeñas áreas de esteadita (ver Micrografía C297).

Zona intermedia

• Forma y distribución de grafito

La distribución presentada en la Micrografía C298, es menos uniforme que en la zona central, pero con los mismos tipos de grafito (tipo A y tipo B).

• Tamaño de grafito

Las láminas de grafito corresponden a tamaños N° 2 y N° 3, como se presenta en la micrografía C49. Clasificación: Grafito I A/B 2/3 UNE 36 117

• Tipo de matriz

La matriz es perlítica con presencia de esteadita en mayor cantidad que en la zona central (ver micrografía C50).

Zona periferia

• Forma y distribución de grafito

La micrografía C51, presenta láminas de grafito tipo B.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaños N°3 y N°4, como se presenta en la micrografía C52. Clasificación: Grafito I B 3/4 UNE 36 117

• **Tipo de matriz** En la micrografía C53, se muestra una matriz perlítica con esteadita.

Defectos

- La
- Micrografía C302, muestra defectos tipo microporos, que aparecen a lo largo de toda la pieza, al igual que gran cantidad de sulfuros de manganeso, que se muestran en la

- Micrografía C303. Además, en la
- Micrografía C304, se muestra una inclusión de escoria ubicada en la zona periferia.

Micrografía C293. Hierro hipoeutéctico con láminas de grafito tipo A y B, forma I. Zona central. Estado de pulido (no atacado). 200X

Micrografía C294. Láminas de grafito N° 2 y N°3, zona central. Estado pulido (no atacado). 137.08X

Micrografía C295.Hierro en estado de colada. Matriz perlítica con zonas levemente ferritizadas y esteadita. Hay mayoritariamente perlita gruesa. Zona central. Atacado con 3% Nital. 548.33X

Micrografía C296. Láminas de grafito tipo A y tipo B, forma I. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C297. Tamaño de láminas de grafito N°2 y N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C298. Hierro en estado de colada. Matriz perlítica y abundante esteadita. Hay tanto perlita fina como gruesa. Zona intermedia. Atacado con 3% Nital. 548.33X

Micrografía C299. Láminas de grafito tipo B, forma I. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C300. Medidas de los tamaños de grafito que corresponden a N°3 y N°4. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C301. Hierro en estado de colada. Matriz perlítica con esteadita. Hay tanto perlita fina como gruesa. Zona periferia. Atacado con 3% Nital. 548.33X

Micrografía C302. Microporos del tipo microporos. Estado de pulido (no atacado). 137.08X

Micrografía C303. Gran cantidad de particulas de sulfuro de manganeso. Estado de pulido (no atacado). 500X

Micrografía C304. Inclusión de escoria. Zona periferia. Estado de pulido (no atacado). 137.08X

24. Muestra M28

Zona central

• Forma y distribución de grafito

La

Micrografía C305, muestra un hierro gris con una distribución de láminas de grafito tipo A y orientadas en forma de rosetas, tipo B y forma I.

- Tamaño de grafito
 - En la

Micrografía C306, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de las láminas N°3 y 4. Clasificación: Grafito I A/B 3/4 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica (gruesa) rodeada por pequeñas áreas de esteadita (ver Micrografía C207)

Micrografia C307).

Zona intermedia

• Forma y distribución de grafito La

Micrografía C308, muestra láminas de grafito tipo B y E, y forma I.

• Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 3 y 4, como se presenta en la m

Micrografía C309.Clasificación: Grafito I B/E 3/4 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con presencia de esteadita (ver Micrografía C310).

Zona periferia

• Forma y distribución de grafito

La

Micrografía C311, presenta láminas de grafito tipo B y tipo E, forma I.

Tamaño de grafito

Las láminas de grafito corresponden a tamaño N° 4, como se presenta en la Micrografía C312. Clasificación: Grafito I B/E 4 UNE 36 117

• Tipo de matriz

La matriz que presenta esta probeta es perlítica con esteadita (zonas blancas punteadas), como se muestra en la Micrografía C313.

Defectos

- En la
- Micrografía C314, se pueden apreciar muchos microporos del tipo cavidades de contracción, a lo largo de toda la sección de la pieza. Además, en la

• Micrografía C315, aparecen partículas de sulfuros de manganeso.

Micrografía C305. Láminas de grafito tipo A y B, forma I. Zona central. Estado de pulido (no atacado). 200X

Micrografía C306. Medidas de los tamaños de grafito que corresponden a N°3. Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C307. Hierro fundido en estado de colada. Matriz predominantemente perlítica con pequeñas zonas de esteadita. Hay tanto perlita fina como gruesa. Atacado con 3% Nital. 548.33X

Micrografía C308. Láminas de grafito tipo B y E, forma I. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C309. Tamaños de láminas de grafito N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C310. Hierro fundido en estado de colada. Matriz predominantemente perlítica con esteadita. Hay tanto perlita fina como gruesa. Zona intermedia. Atacado con 3% Nital. 548.33X

Micrografía C311. Distribución de las láminas de grafito, tipo B y tipo E, forma I. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C312. Tamaño de grafito Nº 4. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C313. Hierro gris en estado de colada. Matriz perlítica con eteadita. Hay tanto perlita fina como gruesa. Atacada con 3% Nital. 548.33X

Micrografía C314. Microporos del tipo cavidaddes de contracción. Estado de pulido (no atacado). 137.08X

Micrografía C315. Partículas de sulfuros de manganeso en toda la sección de la pieza. Estado de pulido (no atacado). 500X

25. Muestra M29

Zona central

• Forma y distribución de grafito

La

Micrografía C316, muestra un hierro gris con una distribución de láminas de grafito tipo A y tipo B. Ambos tipos de grafito tienen forma I.

• Tamaño de grafito

Esta zona presenta tamaños de grafito N° 3, como se muestra en la Micrografía C317. Clasificación: Grafito I A/B 3 UNE 36 117

• Tipo de matriz

En la

Micrografía C318, se muestra la microestructura de un hierro gris con matriz perlítica. Además, se observan áreas con esteadita.

Zona intermedia

- Forma y distribución de grafito
 - La

Micrografía C319, muestra láminas de grafito tipo A y B, y forma I.

- Tamaño de grafito Las láminas de grafito corresponden a tamaño N° 3, como se presenta en la Micrografía C320. Clasificación: Grafito I A/B 3 UNE 36 117
- Tipo de matriz

La microestructura de la matriz es perlítica con presencia de esteadita (ver

Micrografia C321).

Zona periferia

• Forma y distribución de grafito

La

Micrografía C322, presenta láminas de grafito tipo B y tipo E, es decir, láminas de grafito que se encuentran en regiones interdendríticas con orientación preferida, y forma I.

Tamaño de grafito

Las láminas de grafito corresponden a tamaño N°3 y N°4, como se presenta en la

Micrografía C323. Clasificación: Grafito I B/E 3/4 UNE 36 117

• Tipo de matriz

La matriz que presenta esta probeta es perlítica con esteadita (zonas blancas punteadas), como se muestra en la Micrografía C324.

Defectos

- En la
- Micrografía C325, se pueden apreciar muchos microporos del tipo cavidades de contracción y sulfuros de manganeso, como se muestran en la
- Micrografía C326.

Micrografía C316. Hierro fundido hipoeutéctico con distribución de láminas de grafito tipo A y B. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C317. Láminas de grafito con tamaño N°3. Zona central. Estado de pulido (no atacado). 274.15X

Micrografía C318. Hierro en estado de colada. Matriz perlítica con esteadita. Hay mayoritariamente perlita gruesa. Zona central. Atacado con 3% Nital. 548.33X

Micrografía C319. Hierro en estado de colada. Matriz perlítica con esteadita. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C320. Hierro fundido con láminas de grafito N°3. Zona intermedia. Estado de pulido (no atacado). 274.16X

Micrografía C321.Hierro en estado de colada. Matriz perlítica y áreas de esteadita. Hay mayoritariamente perlita gruesa. Atacado con 3% Nital. 548.33X

Micrografía C322. Hierro fundido hipoeutéctico con distribución de láminas de grafito tipo B y E, forma I. Zona periferia. 200X

Micrografía C323. Hierro fundido con láminas de grafito N°3 y N°4. Zona periferia. Estado de pulido (no atacado). 274.15X

Micrografía C324. Hierro en estado de colada. Matriz perlítica y áreas de esteadita. Hay tanto perlita fina como gruesa. Atacado con 3% Nital. 548.33X

Micrografía C325. Microporos del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía C326. Sulfuros de manganeso que aparecen en toda la sección transversal de la barra. Estado de pulido (no atacado). 500X

Taller 10

26. Muestra M30

Zona central

• Forma y distribución de grafito

La

Micrografía C327, muestra un hierro gris hipoeutéctico con una distribución de láminas de grafito tipo B, forma I.

• Tamaño de grafito

En la

Micrografía C328, se muestran algunas medidas de las láminas de grafito. Los resultados corresponden a tamaños de láminas N°2 y N°3. Clasificación: Grafito I B 2/3 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es predominantemente perlítica, con grandes áreas de esteadita, como se presenta en la Micrografía C329.

Zona intermedia

- Forma y distribución de grafito La distribución presentada en la Micrografía C330, muestra grafito tipo B y forma I.
- Tamaño de grafito
 Las láminas de grafito corresponden a tamaños N°2 y N°3, como se
 presenta en la
 Micrografía C331. Clasificación: Grafito I B 2/3 UNE 36 117
- Tipo de matriz
- La microestructura de la matriz es perlítica con presencia de esteadita en grandes cantidades (ver
- Micrografía C332).

Zona periferia

• Forma y distribución de grafito La

Micrografía C333, presenta láminas de rosetas que corresponden a la distribución tipo B, forma I.

- Tamaño de grafito Las láminas de grafito corresponden al tamaño N°3, como se presenta en la Micrografía C334. Clasificación: Grafito I B 3 UNE 36 117
- Tipo de matriz
 - En la

Micrografía C335, se muestra una matriz perlítica, con esteadita (zonas blancas punteadas).

Defectos

• Micrografía C336, se pueden apreciar muchos microporos del tipo cavidades de contracción.

Micrografía C327. Láminas de grafito tipo B, forma I. Zona central. Estado de pulido (no atacado). 200X

Micrografía C328.Tamaños de las láminas de grafito N°2 y N°3.Zona central. Estado de pulido (no atacado). 137.08X

Micrografía C329. Hierro fundido en estado de colada. Matriz perlítica con grandes zonas de esteadita. Hay tanto perlita fina como gruesa. Zona central. Atacado con 3% Nital. 548.33X

Micrografía C330. Láminas de grafito tipo B y forma I. Zona intermedia. Estado de pulido (no atacado). 200X

Micrografía C331. Láminas de grafito que corresponden a tamaños N°2 y N°3. Zona intermedia. Estado de pulido (no atacado). 137.08X

Micrografía C332. Hierro fundido en estado de colada. Matriz perlítica con grandes zonas de esteadita. Zona intermedia. Hay tanto perlita fina como gruesa. Atacado con 3% Nital. 548.33X

Micrografía C333. Láminas de grafito tipo B, forma I. Zona periferia. Estado de pulido (no atacado). 200X

Micrografía C334. Medidas de las láminas de grafito que corresponden a N°3. Zona periferia. Estado de pulido (no atacado). 137.08X

Micrografía C335. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Hay mayoritariamente perlita fina. Zona periferia. Atacado con 3% Nital. 548.33X

Micrografía C336. Microporos y microrrechupes en toda la sección transversal de la pieza. Estado de pulido (no atacado). 137.08X

Anexo D. Micrografía de las chatarras analizadas

1. Carcaza de bomba (C1)

• Forma y distribución de grafito

El hierro fundido presenta una distribución en forma de rosetas que contienen grafito fino, es decir, tipo B y forma I; que es la distribución habitual para hierros con composición eutéctica o muy cercana a la eutéctica (ver Micrografía D1).

• Tamaño de grafito

En la

Micrografía D2, se muestran algunas medidas del grafito. Clasificación: Grafito I B 4 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es ferrito perlítica, con gran cantidad de esteadita, como se muestra en la

Micrografía D3.

• Defectos

En toda la pieza aparecen defectos, tales como microrechupes, como se muestra en la

Micrografía D4. Además, se puede apreciar la presencia de varios microporos.

Micrografía D1. Hierro de composición cercana a la eutéctica, con láminas de grafito tipo B y forma I. Estado de pulido (no atacado). 137.08X

Micrografía D2. Tamaños de las láminas de grafito N°4. Estado de pulido (no atacado). 137.08X

Micrografía D3. Hierro gris con matriz ferrito-perlítica y áreas de esteadita. Mayoritariamente perlita gruesa. Hay mayoritariamente perlita fina. Atacado con 3% nital. 548.33X

Micrografía D4. Se muestran microrechupes en el hierro fundido. Estado de pulido (no atacado). 137.08X

2. Carcaza de bomba (C2)

• Forma y distribución de grafito

El hierro fundido presenta una distribución tipo A y forma I en la zona central de la pieza, como se presenta en la

Micrografía D5. Además, en la zona de la periferia, las láminas de grafito se encuentran en regiones interdendríticas con orientación preferida, es decir, tienen una distribución tipo E y forma I (ver

Micrografía D6). Estos dos tipos de distribución reflejan la heterogeneidad en las propiedades mostrada en el ensayo de dureza.

• Tamaño de grafito

Además, de la heterogeneidad en la distribución de las láminas de grafito, existe una variación en los tamaños de grafito. Este parámetro influye en las propiedades mecánicas de la pieza. En la

Micrografía D7, se muestran algunas medidas del grafito. Clasificación: Grafito I B/E 4/5 UNE 36 117

• Tipo de matriz

La microestructura de la matriz es perlítica con pequeñas cantidades de esteadita, como se muestra en la Micrografía D8.

Defectos

Micrografía D9, se muestran microporos del tipo cavidades de contracción en toda la sección de la pieza. Además, en la

Micrografía D10, se muestran gran cantidad de sulfuros de manganeso.

Micrografía D5. Hierro gris con una distribución tipo A y forma I, en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía D6. Láminas de grafito de distribución tipo E y forma I, en la zona de la periferia de la pieza. Estado de pulido (no atacado). 137.08X

Micrografía D7. Medidas de las láminas de grafito que corresponden a tamaños N°4 y N°5, en la zona de la periferia. Estado de pulido (no atacado). 137.08X

Micrografía D8. Hierro gris. Matriz perlítica con pequeñas áreas de esteadita. Mayoritariamente perlita gruesa. Atacado con 3% nital. 548.33X

Micrografía D9. Microporos del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía D10. Sulfuros de manganeso en toda la pieza. Estado de pulido (no atacada). 548.33X

3. Volante de motor eléctrico (C3)

Forma y distribución de grafito •

Las láminas de grafito se encuentran en regiones interdendríticas con orientación preferida, es decir, tienen una distribución tipo A y tipo E y forma I, como se presenta en la

Micrografia D1337.

Tamaño de grafito

Existe una variación en los tamaños de grafito. Este parámetro influye en las propiedades mecánicas de la pieza. En la

Micrografía D12, se muestran los valores de las medidas de los tamaños de grafito, en la zona central de la pieza. Clasificación: Grafito I A/E 3/4UNE 36 117

Tipo de matriz

La microestructura de la matriz es ferrito-perlítica, con pequeñas cantidades de esteadita, como se muestra en la Micrografía D13.

Defectos

En la

Micrografía D14, se muestran partículas de sulfuros de manganeso.

Micrografía D1337. Láminas de grafito de distribución tipo A y tipo E y forma I. Estado de pulido (no atacado). 137.08X

Micrografía D12. Medidas de los tamaños de grafito N° 3 y N°4, en la zona cental. Estado de pulido (no atacado). 137.08X

Micrografía D13. Hierro gris. Matriz ferrito-perlítica con pequeñas áreas de esteadita. Hay tanto perlita fina como gruesa. Atacado con 3% nital. 548.33X

Micrografía D14. Partículas de sulfuros de manganeso. Estado de pulido (no atacado). 548.33X

4. Volante de motor eléctrico (C4)

• Forma y distribución de grafito

Las láminas de grafito se encuentran en regiones interdendríticas con orientación preferida, es decir, tienen una distribución tipo A y tipo E y forma I, como se presenta en la

Micrografía D15. Este tipo de distribución no uniforme, genera heterogeneidad en las propiedades mecánicas.

• Tamaño de grafito

En

Micrografía D16, se muestran los valores de las medidas de los tamaños de grafito que corresponden a tamaño N°4.Clasificación: Grafito I A/E 4 UNE 36 117

• Tipo de matriz

La microestructura de este hierro hipoeutéctico, presenta un matriz ferrito perlítica, con pequeñas zonas de esteadita (ver Micrografía D17).

• Defectos

En la

Micrografía D18, se muestran microrechupes en toda la sección de la pieza.

Micrografía D15. Láminas de grafito tipo A y tipo E, forma I. Estado de pulido (no atacado). 137.08X

Micrografía D16. Medidas de las láminas de grafito que corresponden a tamaño N°4. Estado de pulido (no atacado). 137.08X

Micrografía D17. Hierro hipoeutéctico. Matriz ferrito perlítica, con pequeñas zonas de esteadita. Hay tanto perlita fina como gruesa. Atacado con 3% nital. 548.33X

Micrografía D18. Microrechupes en la zona central de la pieza. Estado de pulido (no atacado). 137.08X

5. Bancada de motor (C5)

• Forma y distribución de grafito

Las láminas de grafito se encuentran en regiones interdendríticas con orientación preferida, es decir, tienen una distribución tipo A y tipo E y forma I (ver Micrografía D19.

• Tamaño de grafito

• Tipo de matriz

La microestructura de la matriz es perlítica con algunas zonas ferritizadas y pequeñas cantidades de esteadita, como se muestra en la Micrografía D21.

• Defectos

En la

Micrografía D22 se muestran microporos del tipo cavidades de contracción. Además, en la

Micrografía D23, se muestran gran cantidad de sulfuros de manganeso.

Micrografía D19. Láminas de grafito con distribución tipo B y tipo E. Estado de pulido (no atacado). 137.08X

Micrografía D20. Tamaño de láminas de grafito N° 3 y N°4. Estado de pulido (no atacado). 137.08X

Micrografía D21. Hierro fundido martiz perlítica con zonas de esteadita. Hay mayoritariamente perlita gruesa. Atacado con 3% nital. 548.33X

Micrografía D22. Microporos de tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía D23. Partículas de sulfuros de manganeso. Estado de pulido (no atacado). 548.33X

6. Barrita cilíndrica (C6)

• Forma y distribución de grafito

El hierro fundido presenta una distribución en forma de rosetas, tipo B y segregación interdentrítica orientada, tipo E. Ambos tipos, de forma I. (ver micrografía D24).

• Tamaño de grafito

En la

Micrografía D25, se muestran algunas medidas de grafito. Clasificación: Grafito I B/E 4/5 UNE 36117

• Tipo de matriz

Presenta matriz perlítica con pequeñas zonas de esteadita. Se aprecia ledeburita. Como se muestra en la micrografía D26.

• Defectos

Se detecta presencia de microporos sobre la superficie de la pieza. Esto se aprecia en la

Micrografía D27. Así como algunas partículas de sulfuro de manganeso (Micrografía D28).

Micrografía D24. Hierro de composición cercana a la eutéctica, con láminas de grafito tipo B y E, forma I. Estado de pulido (no atacado). 137.08X

Micrografía D25. Tamaño de las láminas de grafito N° 4 y N°5. Estado de pulido (no atacado) 137.08X

Micrografía D26. Hierro gris con ledeburita, matriz perlítica con pequeñas áreas de esteadita. Hay mayoritariamente perlita fina. Atacado con 3% de nital. 548.33X

Micrografía D27. Microporos en la superficie del hierro fundido. Estado de pulido (no atacado). 137.08X

Micrografía D28. Algunas partículas de sulfuro de manganeso. Estado de pulido (no atacado). 137.08X

7. Cilindro de metal (C7):

• Forma y distribución del grafito

Tal y como se muestra en la

Micrografía D29, se evidencia presencia de grafito tipo A y B. De forma I.

• Tamaño de grafito:

Láminas de grafito de tamaños N°2, N°3 y en la periferia, N°4 (Micrografía D30). Clasificación: Grafito I A/B ³/₄ UNE 36117

• Tipo de matriz

Matriz perlítica con escasa presencia de esteadita en algunas áreas. Se muestra en la Micrografía D31.

• Defectos

En toda la pieza se pueden visualizar microporos, como se puede ver en la Micrografía D.También se observaron partículas de sulfuro de manganeso agrupadas (

Micrografia D33).

Micrografía D29. Distribución de grafito de tipo A y B, forma I, estado de pulido (no atacado), 137.08

Micrografía D30. Medidas de las láminas de grafíto mayormente de tamaños N°3 y N°4. En estado de pulido (no atacada). 137,08X

Micrografía D31. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548,33X

Micrografía D32. Microporos en el hierro fundido. Estado de pulido (no atacado). 137.08X

Micrografía D33. Partículas de sulfuro de Manganeso en el hierro fundido. Estado de pulido (no atacado). 548,33X

8. Válvula (C8):

• Forma y distribución de grafito

El hierro fundido presenta una distribución tipo A y E (Micrografía D34).

• Tamaño de grafito

En la Micrografía D3338 se muestran algunas medidas del grafito. Clasificación: Grafito I A/E 2/3/4 UNE 36 117

• Tipo de matriz

La microestructura revela una matriz de perlita con escasa presencia de esteadita, esto se muestra en la Micrografía D3339.

• Defectos

En la

Micrografía D3340, se muestran microporos en la superficie de la probeta y algunas partículas de Sulfuro de Manganeso (Micrografía D3341),

Micrografía D34.Láminas de grafito tipo A y E, forma I. Estado de pulido (no atacada). 137,08X

Micrografía D3338.Medidas de las láminas de grafito que corresponden a tamaños N°2, N°3 y N°4. Estado de pulido (no atacada). 137,08X

Micrografía D3339. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Hay tanto perlita fina como gruesa. Atacada con 3% nital. 548,33X

Micrografía D3340. Microporos del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía D3341. Algunas partículas de Sulfuro de Manganeso en el hierro fundido. Estado de pulido (no atacado). 548,33X

9. Disco (C9):

a. Forma y distribución del grafito

En la micrografía D39 se puede ver, que las láminas de grafito se encuentran en regiones interdentríticas tipo E, de la forma I. Esto, en la periferia, mientras que, en la zona central, se tiene una distribución de grafito tipo A, de forma I. (ver

Micrografía D40).

b. Tamaño de grafito

En

Micrografía D41, los tamaños de las láminas de grafito se encuentra grafitos de los tamaños N°2, N°3. Clasificación: Grafito I A/E 2/3 UNE 36117

c. Tipo de matriz

Presenta matriz perlítica con pequeñas zonas de esteadita (ver

Micrografía D42 se muestran microporos, tipificadas como cavidades de contracción (micrografía D43) y algunas partículas de Sulfuro de Manganeso formando agrupaciones (

Micrografía D44)

Micrografía D39. Distribución de grafito de tipo E. estado de pulido (no atacado), 137.08X

Micrografía D40. Distribución de grafito de tipo A. Estado de pulido (no atacado), 137.08X

Micrografía D41. Medidas de las láminas de grafito que corresponden a tamaños mayoritariamente N°2 y N°3. Estado de pulido (no atacada). 137,08X

Micrografía D42. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548,33X

Micrografía D43. Microporos dle tipo de cavidades de contracción, Estado de pulido (no atacado). 137.08X

Micrografía D44. Algunas partículas de Sulfuro de Manganeso, Estado de pulido (no atacado). 548,33X

10. Motor (C10):

• Forma y distribución de grafito

Se pueden ver rosetas tipo B y segregación interdentrítica tipo E. de forma I. (Ver Micrografía D45)

• Tamaño de grafito

En la

Micrografía D46 se muestran algunas medidas de las láminas de grafito en la zona central de la pieza. Predomina el tamaño de lámina de grafito N°3 y cuanto más cerca se encuentra de la periferia, las láminas pueden llegar al tamaño N°4. Clasificación: Grafito I B/E ³/₄ UNE 36 117.

• Tipo de matriz

La microestructura de la matriz es perlítica ligeramente ferritizada con presencia de esteadita en algunas regiones. (Ver Micrografía D47)

• Defectos

En la

Micrografía D48, se muestran microporos en la superficie y Sulfuro de Manganeso (Micrografía D49).

Micrografía D45.Distribución de grafito de tipo B y E. Estado de pulido (no atacado), 137.08X

Micrografía D46.Medidas de las láminas de grafito que corresponden a tamaños N°2, N°3. Estado de pulido (no atacada). 137,08X.

Micrografía D47.Hierro fundido en estado de colada. Matriz perlítica ligeramente ferritizada con esteadita. Hay mayoritariamente perlita fina. Atacada con 3% nital. 548,33X

Micrografía D48. Microporos del tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía D49. Partículas de Sulfuro de Manganeso. Estado de pulido (no atacado). 548,33X

11. Trozo (C11):

• Forma y distribución de grafito

En la

Micrografía D50, se pueden ver hojuelas orientadas uniformemente, de tipo A y E; ambas, de forma I.

• Tamaño del grafito

En la micrografía D51, se muestran algunas medidas del grafito. Predominan los tamaños de lámina de grafito N°2 y N°3. Clasificación: Grafito I A/E 2/3 UNE 36 117

• Tipo de matriz

La microestructura revela matriz perlítica con presencia de esteadita en algunas zonas. (Ver

Micrografia D52).

• Defectos

En la

Micrografía D53, se muestran microporos y al igual que se detecta sulfuro de manganeso (Micrografía D54).

Micrografía D50. Distribución de grafito de tipo A, estado de pulido (no atacado), 137.08X

Micrografía D51. Láminas de grafito de tamaños N°2 y N°3. Estado de pulido (no atacado). 137.08X

Micrografía D52. Hierro fundido en estado de colada. Matriz perlítica con esteadita. Hay tanto perlita fina como gruesa. Atacada con 3% nital. 548,33X

Micrografía D53. Microporos de tipo cavidades de contracción. Estado de pulido (no atacado). 137.08X

Micrografía D54.Algunas partículas de Sulfuro de Manganeso. Estado de pulido (no atacado). 540,33X

Anexo E. Micrografía de las chatarras analizadas

Muestra M1 – Taller 1			
		%	de
Micrografía	N° pixeles	vol.	
1	37388	0.761	
2	87648	1.783	
3	43644	0.888	
4	45742	0.931	
5	38722	0.788	
6	17445	0.355	
7	26368	0.536	
8	42207	0.859	
9	35540	0.723	
10	23575	0.480	
11	22424	0.456	
12	10551	0.215	
13	75090	1.528	
14	56781	1.155	
15	33663	0.685	
16	30571	0.622	
	Promedio	0.798	

" Todas las lotos tienen un numero total de pixeles de 4915200
--

Muestra M3 – Taller 1				
		%	de	
Micrografía	N° pixeles	vol.		
1	54838	1.116		
2	39074	0.795		
3	47110	0.958		
4	74350	1.513		
5	87304	1.776		
6	49942	1.016		
7	50604	1.030		
8	53223	1.083		
9	29773	0.606		
10	41524	0.845		
11	34422	0.700		
12	41524	0.845		
13	36152	0.736		
14	25282	0.514		
15	26062	0.530		
16	41729	0.849		
	Promedio	0.932		

Muestra M2 – Taller 1			
	N°	%	de
Micrografía	pixeles	vol.	
1	101043	2.056	
2	87086	1.772	
3	15997	0.325	
4	33682	0.685	
5	38742	0.788	
6	20707	0.421	
7	39611	0.806	
8	34968	0.711	
9	28825	0.586	
10	17347	0.353	
11	26246	0.534	
12	32754	0.666	
13	30474	0.620	
14	18357	0.373	
15	42189	0.858	
16	22231	0.452	
	Promedio	0.751	

Muestra M5 – Taller 2				
	N°	%	de	
Micrografía	pixeles	vol.		
1	57401	1.168		
2	67817	1.380		
3	63381	1.289		
4	78608	1.599		
5	52655	1.071		
6	93214	1.896		
7	44783	0.911		
8	20267	0.412		
9	9543	0.194		
10	79056	1.608		
11	59090	1.202		
12	55779	1.135		
13	21316	0.434		
14	63700	1.296		
15	40814	0.830		
16	22294	0.454		
	Promedio	1.055		

Muestra M6 – Taller 3			
	%	de	
N° pixeles	vol.		
40136	0.817		
32567	0.663		
64935	1.321		
59497	1.210		
71684	1.458		
78576	1.599		
30764	0.626		
32262	0.656		
31141	0.634		
41612	0.847		
25438	0.518		
31260	0.636		
42518	0.865		
49901	1.015		
35205	0.716		
41878	0.852		
	ra M6 – Tall N° pixeles 40136 32567 64935 59497 71684 78576 30764 32262 31141 41612 25438 31260 42518 49901 35205 41878	ra M6 – Taller 3 % N° pixeles vol. 40136 0.817 32567 0.663 64935 1.321 59497 1.210 71684 1.458 78576 1.599 30764 0.626 32262 0.656 31141 0.634 41612 0.847 25438 0.518 31260 0.636 42518 0.865 49901 1.015 35205 0.716 41878 0.852	

Promedio

0.902

Muestra M8 – Taller 4				
		%	de	
Micrografía	N° pixeles	vol.		
1	214958	4.373		
2	215063	4.375		
3	309112	6.289		
4	145959	2.970		
5	105422	2.145		
6	164014	3.337		
7	172760	3.515		
8	127050	2.585		
9	183861	3.741		
10	151016	3.072		
11	95359	1.940		
12	123739	2.517		
13	77756	1.582		
14	116464	2.369		
15	173092	3.522		
16	180398	3.670		
	Promedio	3.250		

Muestra M7 – Taller 4			
	N°	%	de
Micrografía	pixeles	vol.	
1	119498	2.431	
2	119411	2.429	
3	152477	3.102	
4	235955	4.801	
5	103720	2.110	
6	115956	2.359	
7	107559	2.188	
8	116165	2.363	
9	32415	0.659	
10	71889	1.463	
11	77622	1.579	
12	107704	2.191	
13	68310	1.390	
14	61094	1.243	
15	134201	2.730	
16	94249	1.918	
	Promedio	2.185	

Muestra M9 – Taller 4			
	N°	%	de
Micrografía	pixeles	vol.	
1	134915	2.745	
2	140088	2.850	
3	137203	2.791	
4	136841	2.784	
5	108658	2.211	
6	51530	1.048	
7	73480	1.495	
8	15632	0.318	
9	158068	3.216	
10	155580	3.165	
11	132599	2.698	
12	110572	2.250	
13	12064	0.245	
14	43468	0.884	
15	56125	1.142	
16	78353	1.594	
	Promedio	1.965	

Muestra M11 – Taller 5			
		%	de
Micrografía	N° pixeles	vol.	
1	51930	1.057	
2	56805	1.156	
3	73150	1.488	
4	45066	0.917	
5	40160	0.817	
6	52124	1.060	
7	28439	0.579	
8	57785	1.176	
9	63963	1.301	
10	64091	1.304	
11	63070	1.283	
12	66070	1.344	
13	31138	0.634	
14	137633	2.800	
15	40052	0.815	
16	32523	0.662	
	Promedio	1.149	

Muestra M14 – Taller 6			
		%	de
Micrografía	N° pixeles	vol.	
1	70528	1.435	
2	66482	1.353	
3	93899	1.910	
4	73525	1.496	
5	63879	1.300	
6	59677	1.214	
7	59690	1.214	
8	107230	2.182	
9	128472	2.614	
10	67335	1.370	
11	88214	1.795	
12	138776	2.823	
13	106652	2.170	
14	95147	1.936	
15	94477	1.922	
16	77144	1.569	
	Promedio	1.769	

Muestra M12 – Taller 5			
	N°	%	de
Micrografía	pixeles	vol.	
1	38408	0.781	
2	80433	1.636	
3	33192	0.675	
4	55489	1.129	
5	53541	1.089	
6	62712	1.276	
7	60157	1.224	
8	26304	0.535	
9	23625	0.481	
10	38834	0.790	
11	96427	1.962	
12	51266	1.043	
13	73834	1.502	
14	72457	1.474	
15	85096	1.731	
16	58838	1.197	
	Promedio	1.158	

Muestra M15 y M16 – Taller 6			
	N°	%	de
Micrografía	pixeles	vol.	
1	24884	0.506	
2	112335	2.285	
3	24176	0.492	
4	34149	0.695	
5	38234	0.778	
6	70723	1.439	
7	40967	0.833	
8	30988	0.630	
9	13298	0.271	
10	55170	1.122	
11	13935	0.284	
12	9421	0.192	
13	51109	1.040	
14	15392	0.313	
15	17244	0.351	
16	42416	0.863	
	Promedio	0.756	

Muestra M17 – Taller 7			
		%	de
Micrografía	N° pixeles	vol.	
1	45775	0.931	
2	139593	2.840	
3	68245	1.388	
4	81571	1.660	
5	97017	1.974	
6	75534	1.537	
7	47061	0.957	
8	108743	2.212	
9	90958	1.851	
10	63356	1.289	
11	44594	0.907	
12	28000	0.570	
13	59229	1.205	
14	57148	1.163	
15	62947	1.281	
16	26623	0.542	

Promedio

1.394

Muestra M20 – Taller 8				
		%	de	
Micrografía	N° pixeles	vol.		
1	16965	0.345		
2	13101	0.267		
3	21013	0.428		
4	6962	0.142		
5	16179	0.329		
6	8579	0.175		
7	9308	0.189		
8	25550	0.520		
9	27488	0.559		
10	15420	0.314		
11	20632	0.420		
12	37748	0.768		
13	1588	0.032		
14	21129	0.430		
15	13586	0.276		
16	7428	0.151		
	Promedio	0.334		

Muestra M19 – Taller 8				
	N°	%	de	
Micrografía	pixeles	vol.		
1	99566	2.026		
2	17679	0.360		
3	54233	1.103		
4	30486	0.620		
5	26261	0.534		
6	26339	0.536		
7	15301	0.311		
8	16771	0.341		
9	50860	1.035		
10	25630	0.521		
11	28403	0.578		
12	19200	0.391		
13	65400	1.331		
14	21626	0.440		
15	33321	0.678		
16	24288	0.494		
	Promedio	0.706		

Muestra M21 y M22 – Taller 8				
	N°	% de		
Micrografía	pixeles	vol.		
1	34775	0.707		
2	53383	1.086		
3	22179	0.451		
4	8816	0.179		
5	52479	1.068		
6	43356	0.882		
7	15357	0.312		
8	20203	0.411		
9	12520	0.255		
10	11466	0.233		
11	14878	0.303		
12	19771	0.402		
13	34286	0.698		
14	31121	0.633		
15	20347	0.414		
16	34833	0.709		
	Promedio	0.546		

Muestra M23 – Taller 8				
		%	de	
Micrografía	N° pixeles	vol.		
1	90331	1.838		
2	35540	0.723		
3	82321	1.675		
4	43623	0.888		
5	63720	1.296		
6	70084	1.426		
7	44986	0.915		
8	46113	0.938		
9	56474	1.149		
10	38503	0.783		
11	37901	0.771		
12	26754	0.544		
13	29847	0.607		
14	45173	0.919		
15	30742	0.625		
16	54694	1.113		
	Promedio	1.013		

Muestra M25 – Taller 9			
		% de	
Micrografía	N° pixeles	vol.	
1	70478	1.434	
2	92413	1.880	
3	29156	0.593	
4	57440	1.169	
5	36497	0.743	
6	21697	0.441	
7	56018	1.140	
8	44622	0.908	
9	48249	0.982	
10	67309	1.369	
11	39433	0.802	
12	71357	1.452	
13	59205	1.205	
14	39955	0.813	
15	53395	1.086	
16	35353	0.719	
	Promedio	1.046	

Muestra M24 – Taller 8				
	N°	%	de	
Micrografía	pixeles	vol.		
1	35419	0.721		
2	48184	0.980		
3	40229	0.818		
4	34231	0.696		
5	70516	1.435		
6	52236	1.063		
7	26300	0.535		
8	43715	0.889		
9	18017	0.367		
10	70661	1.438		
11	16909	0.344		
12	40849	0.831		
13	59344	1.207		
14	50712	1.032		
15	43931	0.894		
16	19054	0.388		
	Promedio	0.852		

Muestra M26 – Taller 9			
	N°	%	de
Micrografía	pixeles	vol.	
1	51768	1.053	
2	44887	0.913	
3	66027	1.343	
4	49379	1.005	
5	49053	0.998	
6	83288	1.694	
7	65715	1.337	
8	40249	0.819	
9	31376	0.638	
10	50806	1.034	
11	67712	1.378	
12	47324	0.963	
13	55620	1.132	
14	31843	0.648	
15	50949	1.037	
16	47693	0.970	
	Promedio	1.060	

Muestra M27, M28 y M29 –		
	Taller 9	
		% de
Micrografía	N° pixeles	vol.
1	80714	1.642
2	46371	0.943
3	59016	1.201
4	43851	0.892
5	38423	0.782
6	42139	0.857
7	34366	0.699
8	47386	0.964
9	69158	1.407
10	44603	0.907
11	34358	0.699
12	63445	1.291
13	29115	0.592
14	39090	0.795
15	54474	1.108
16	13880	0.282
	Promedio	0.941

Ν	Muestra C1		
		%	de
Micrografía	N° pixeles	vol.	
1	157178	3.198	
2	123356	2.510	
3	155770	3.169	
4	107776	2.193	
5	118046	2.402	
6	137796	2.803	
7	100628	2.047	
8	168225	3.423	
9	109436	2.226	
10	100998	2.055	
11	103863	2.113	
12	64405	1.310	
	Promedio	2.454	

Muestra M30 – Taller 1				
	N°	%	de	
Micrografía	pixeles	vol.		
1	37807	0.769		
2	40690	0.828		
3	36565	0.744		
4	42330	0.861		
5	474112	9.646		
6	447414	9.103		
7	445217	9.058		
8	313447	6.377		
9	161449	3.285		
10	104116	2.118		
11	258874	5.267		
12	447114	9.097		
13	37807	0.769		
14	313100	6.370		
15	78950	1.606		
16	264000	5.371		
	Promedio	4.454		

Muestra C2			
	N°	%	de
Micrografía	pixeles	vol.	
1	13080	0.266	
2	11002	0.224	
3	5496	0.112	
4	12021	0.245	
5	13006	0.265	
6	8832	0.180	
7	9264	0.188	
8	3911	0.080	
9	2035	0.041	
10	11309	0.230	
11	10419	0.212	
12	4754	0.097	
13	24812	0.505	
14	4787	0.097	
15	11070	0.225	
16	9224	0.188	
	Promedio	0.197	

Muestra M1 – C3			
		%	de
Micrografía	N° pixeles	vol.	
1	7231	0.147	
2	1773	0.036	
3	9421	0.192	
4	3070	0.062	
5	3070	0.062	
6	4361	0.089	
7	2351	0.048	
8	3495	0.071	
9	2076	0.042	
10	3156	0.064	
11	2835	0.058	
12	8529	0.174	
13			
14			
15			
16			
	Promedio	0.087	

Muestra – C5			
		%	de
Micrografía	N° pixeles	vol.	
1	131379	2.673	
2	20567	0.418	
3	23982	0.488	
4	101841	2.072	
5	60845	1.238	
6	51764	1.053	
7	38943	0.792	
8	72151	1.468	
9	34260	0.697	
10	16766	0.341	
11	28927	0.589	
12	38526	0.784	
13	106336	2.163	
14	58662	1.193	
15	39171	0.797	
16	55969	1.139	
	Promedio	1.119	

Muestra M2 – C4			
	N°	% de	
Micrografía	pixeles	vol.	
1	7126	0.145	
2	6205	0.126	
3	8856	0.180	
4	9027	0.184	
5	5963	0.121	
6	3476	0.071	
7	3704	0.075	
8	6017	0.122	
9	4030	0.082	
10	7440	0.151	
11	4011	0.082	
12	2065	0.042	
13	1518	0.031	
14	1510	0.031	
15	1518	0.031	
16	1510	0.031	
	Promedio	0.094	

Muestra – C6			
	N°	%	de
Micrografía	pixeles	vol.	
1	24884	0.506	
2	112335	2.285	
3	24176	0.492	
4	34149	0.695	
5	38234	0.778	
6	70723	1.439	
7	20967	0.427	
8	30988	0.630	
9	13298	0.271	
10	56170	1.143	
11	13935	0.284	
12	9421	0.192	
13	51109	1.040	
14	15392	0.313	
15	17244	0.351	
16	42416	0.863	
	Promedio	0.732	
Muestra – C7			
--------------	------------	-------	----
		%	de
Micrografía	N° pixeles	vol.	
1	14216	0.289	
2	17861	0.363	
3	22426	0.456	
4	10785	0.219	
5	25248	0.514	
6	14337	0.292	
7	13354	0.272	
8	13299	0.271	
9	21830	0.444	
10	9430	0.192	
11	1670	0.034	
12	9743	0.198	
13			
14			
15			
16			

Muestra – C9			
		%	de
Micrografía	N° pixeles	vol.	
1	17654	0.359	
2	2662	0.054	
3	2935	0.060	
4	8052	0.164	
5	13619	0.277	
6	10366	0.211	
7	8214	0.167	
8	1981	0.040	
9	10911	0.222	
10	1828	0.037	
11	4214	0.086	
12	7125	0.145	
13	9642	0.196	
14	10985	0.223	
15	6687	0.136	
16	1231	0.025	
	Promedio	0 1 5 0	

Promedio

0.295

Muestra – C8			
	N°	%	de
Micrografía	pixeles	vol.	
1	14066	0.286	
2	4635	0.094	
3	9618	0.196	
4	9072	0.185	
5	16520	0.336	
6	11686	0.238	
7	15816	0.322	
8	11994	0.244	
9	7078	0.144	
10	15963	0.325	
11	13966	0.284	
12	11979	0.244	
13	22007	0.448	
14	13485	0.274	
15	21452	0.436	
16	18622	0.379	
	Promedio	0.277	

Muestra – C10			
	N°	% de	
Micrografía	pixeles	vol.	
1	13726	0.2793	
2	13994	0.2847	
3	10615	0.2160	
4	6400	0.1302	
5	18256	0.3714	
6	2832	0.0576	
7	1770	0.0360	
8	2102	0.0428	
9	7063	0.1437	
10	11204	0.2279	
11	5263	0.1071	
12	6775	0.1378	
13			
14			
15			
16			
	Promedio	0.170	

Muestra – C11			
		%	de
Micrografía	N° pixeles	vol.	
1	14005	0.285	
2	6478	0.132	
3	4864	0.099	
4	10992	0.224	
5	6398	0.130	
6	6076	0.124	
7	4250	0.086	
8	2571	0.052	
9	12729	0.259	
10	15187	0.309	
11	9217	0.188	
12	5532	0.113	
13			
14			
15			
16			
	Promedio	0.167	