

CAPÍTULO 23: ESFERA Y TRIÁNGULOS ESFÉRICOS (I)

Dante Guerrero-Chanduví

Piura, 2015

FACULTAD DE INGENIERÍA

Área Departamental de Ingeniería Industrial y de Sistemas

Esta obra está bajo una <u>licencia</u> <u>Creative Commons Atribución-</u> <u>NoComercial-SinDerivadas 2.5 Perú</u>

Repositorio institucional PIRHUA – Universidad de Piura

UNIVERSIDAD DE PIURA

Capítulo 23: Esfera y Triángulos Esféricos (I)

- A. Conocimientos previos
- B. Polo de un círculo máximo
- C. Triángulo esférico
- D. Triedro asociado a un triángulo

GEOMETRÍA FUNDAMENTAL Y TRIGONOMETRÍA CLASES

CAPÍTULO XXIII: ESFERA Y TRIÁNGULOS ESFÉRICOS

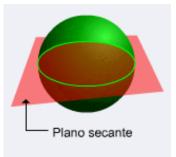
- A. CONOCIMIENTOS PREVIOS
- **B. POLO DE UN CÍRCULO MÁXIMO**
- C. TRIÁNGULO ESFÉRICO
- D. TRIEDRO ASOCIADO A UN TRIÁNGULO

A. CONOCIMIENTOS PREVIOS

a) Todas la tangentes a la esfera de un punto de la misma, están en un plano llamado plano tangente, que es perpendicular al radio que pasa por dicho punto.

A. CONOCIMIENTOS PREVIOS

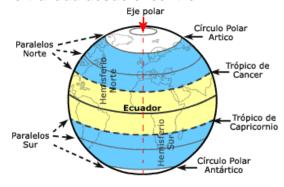
b) El camino, sobre la superficie esférica, más corto entre dos puntos, es un arco de círculo máximo.



Circulo Máximo. Todo plano que pasa por el centro de una esfera la corta según un circulo máximo del mismo radio y centro de la esfera

B. POLO DE UN CÍRCULO MAXIMO

Es cada uno de los puntos en que la esfera es cortada por la perpendicular al plano del círculo máximo trazada desde el centro:



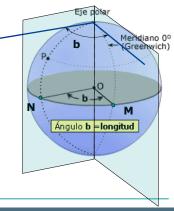
B. POLO DE UN CÍRCULO MAXIMO TEOREMA XXIII-1

El ángulo que forman dos círculos máximos que se cortan en V, es igual al arco que abarca en un círculo máximo cuyo polo sea V.

Sea el **círculo máximo que pasa por V y M** (coincide con el Meridiano de Greenwich), y el **círculo máximo que pasa por V y N**.

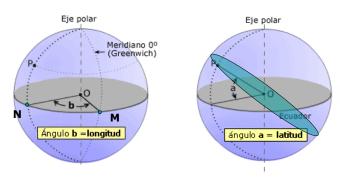
El círculo máximo que pasa por M y N, tienen por polo a V.

De la inspección de la figura se deduce que el \measuredangle b en V (formado por las tangentes) y el \measuredangle MON son iguales (por lados paralelos). Y este último vale lo mismo que el arco MN, por ser un ángulo central.



B. POLO DE UN CÍRCULO MAXIMO TEOREMA XXIII-1

Longitud y Latitud

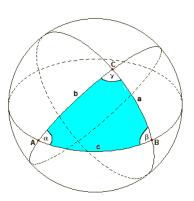


C. TRIÁNGULO ESFÉRICO

Es la superficie esférica, limitada por los arcos de círculo máximo que unen tres puntos.

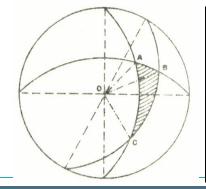
A los puntos se les llama vértices y a los arcos de círculo máximo, lados. A los ángulos que forman los círculos máximos se les llama ángulos del triángulo esférico.

Un triángulo esférico será convexo si no es cortado por la prolongación de sus lados; cóncavo en caso contrario.



D. TRIEDRO ASOCIADO A UN TRIÁNGULO

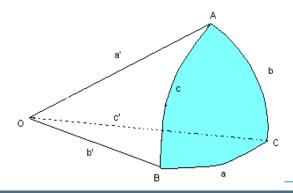
Es el triedro cuyo vértice es el centro de la esfera; cuyas aristas pasan por los vértices del triángulo; y cuyas caras cortan a la esfera según los lados del triángulo; de forma que la superficie del triángulo esférico sea interior al triedro.



D. TRIEDRO ASOCIADO A UN TRIÁNGULO

Cada triángulo tiene un triedro asociado y recíprocamente.

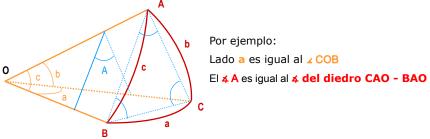
Admitiremos (sin demostración) que el triedro asociado a un triángulo convexo es también convexo y recíprocamente.



D. TRIEDRO ASOCIADO A UN TRIÁNGULO TEOREMA XXIII-2

Los lados (a, b y c) y ángulos (A, B y C) de un triángulo esférico son iguales -a los ángulos- de las caras y -a los ángulos de- los diedros de su triedro asociado, respectivamente.

Demostración: puede hacerse inspeccionando la siguiente figura



Corolario: Un triángulo esférico convexo tiene ángulos y lados menores que 180°.