

FACULTAD DE INGENIERÍA

Diseño y balance energético de una caldera bagacera para la producción de panela mediante tecnología a vapor

Tesis para optar el Título de Ingeniero Mecánico - Eléctrico

Sebastian Alberto Laca Cuglievan

Asesor: Dr. Ing. Mario Daniel Marcelo Aldana

Piura, septiembre de 2020

A Dios por bendecirme día a día.

A mis padres Jossy y Jorge por su constante apoyo, por su tiempo y esfuerzo y sobre todo por su amor.

0

UNIVER

OUR

E

A mi hermana y amigos por acompañarme estos años de formación académica y de realización personal.

Diseño y balance energético de una caldera bagacera para la producción de panela mediante tecnología a vapor Sebastian Alberto Laca Cuglievan Asesor: Dr. Ing. Mario Daniel Marcelo Aldana Tesis. Ingeniero Mecánico-Eléctrico Universidad de Piura. Facultad de Ingeniería. Piura, Septiembre 2020

Palabras claves: Panela/Azúcar Orgánica/Vapor/Caldera/Generador de Vapor/Tecnología a Vapor/Bagazo

Introducción: Actualmente en la serranía de Piura se viene procesando panela utilizando la metodología tradicional, la cual se podría mejorar en cuanto a cantidad y calidad aplicando tecnología a vapor y bajo ciertas condiciones.

Metodología: Utilizando el software MATLAB[®] se aplicarán las ecuaciones de termodinámica y transferencia de calor en cada componente del generador de vapor, haciendo uso de iteraciones para disminuir el error de cálculo y teniendo como base las hipótesis planteadas.

Resultados: Se obtuvo un rendimiento energético de la caldera de casi el 83%, una relación vapor/combustible (bagazo) de 1.785; además, luego de las iteraciones se encontró un valor de temperatura de salida de gases de combustión del precalentador de 179.4°C. También, en las iteraciones de variación de vapor producido, tanto el rendimiento energético como la relación de vapor/bagazo son muy cercanas al valor máximo que se podría obtener aumentando la producción de vapor. Por último, las gráficas de los perfiles de temperatura se asemejan con otras propuestas del Ing. Carlos Andrade-Liviapoma y de Carlos Alderetes.

Conclusiones: La metodología usada fue propuesta por el Ing. Carlos Andrade-Liviapoma. Esta se pudo validar básicamente con dos motivos: la temperatura supuesta de gases de combustión a la salida del precalentador es casi la misma que la obtenida luego de las iteraciones, esto es muy importante puesto que en base de la supuesta se calculan inicialmente los valores de las entalpías; en cuanto al segundo motivo, las gráficas de los perfiles de temperatura son equivalentes a las obtenidas por otros autores. El alcance estuvo definido en obtener los balances de energía y masa, el diseño y dimensionamiento de la caldera. Por último, en cuanto a las limitaciones se decidió realizarlo con los valores locales de temperatura, humedad, etc. de donde se previó que esté la caldera, además de los valores que la tesis del Ing. Ángel Pineda (evaporador de jugos de caña de azúcar) requería de vapor de agua. También se asume que en todo momento existe un régimen turbulento; esto se pudo verificar en las entradas y salidas de los intercambiadores de calor.

Fecha de elaboración del resumen: 14 de septiembre de 2020

Diseño y balance energético de una caldera bagacera para la producción de panela mediante tecnología a vapor Sebastian Alberto Laca Cuglievan Asesor: Dr. Ing. Mario Daniel Marcelo Aldana Tesis. Ingeniero Mecánico-Eléctrico Universidad de Piura. Facultad de Ingeniería. Piura, Septiembre 2020

Keywords: Jaggery/Organic Sugar/Steam/Boiler/Steam Generator/ Steam Technology/Bagasse

Introduction: Currently, jaggery is being processed in the Andes of Piura using the traditional method, which could be improved in terms of quantity and quality by applying steam technology and under specific conditions.

Methodology: Using the software MATLAB[®], the thermodynamic and heat transfer equations will be applied to each component of the steam generator, based on the hypotheses presented and using iterations to reduce the calculation error.

Results: An energetic boiler efficiency of almost 83% and a steam/fuel (bagasse) ratio of 1,785 were obtained. Furthermore, after the iterations, a preheater flue gas outlet temperature value of 179.4°C was calculated. Also, in the iterations of produced steam variation, either the energy efficiency or the steam/bagasse ratio, are very close to the maximum value that could be obtained by increasing the steam production. As a final point, the graphs of the temperature drops are similar to other graphs proposals by Carlos Andrade-Liviapoma, Eng. and Carlos Alderetes.

Conclusions: The methodology used was proposed by Carlos Andrade-Liviapoma, Eng. This methodology could be validated basically for two reasons: the assumed preheater flue gas outlet temperature value is almost the same as that calculated after the iterations. This is very important because based on it, the assumed values of the enthalpies are initially calculated. As for the second reason, the graphs of the temperature drops are equivalent to those obtained by other authors. The scope was defined by obtaining the energy and mass balances, the design and dimensioning of the boiler. Finally, regarding the limitations, it was decided to calculate it with the local values of steam required in the thesis of Angel Pineda, Eng. (sugar cane juice evaporator). It is also assumed that at any given time there is a turbulent flow regime; this could be verified at the inlets and outlets of the heat exchangers.

Summary date: September 14th, 2020

Prefacio

La Universidad de Piura viene trabajando una línea de investigación para la mejora de la eficiencia energética del proceso de producción de panela. Las zonas de producción se ubican en la provincia de Ayabaca, departamento de Piura; que cuentan con un sistema tradicional del proceso de la panela para su posterior molienda y así obtener azúcar orgánica granulada. Este sistema tradicional de procesamiento utiliza los gases de combustión de la quema del bagazo para la transferencia de calor hacia los jugos del azúcar.

El proceso antes mencionado ha tenido mejoras a través de los años, como las cámaras de combustión Ward-CIMPA que han permitido que la eficiencia de la producción aumente, ya que permiten que el bagazo ingrese con menos humedad para su combustión. También se ha estudiado y modificado la forma de las pailas dependiendo su ubicación, además de diseñar accesorios como la válvula mariposa en la chimenea que controla la velocidad de los gases de combustión generando un control de temperatura. Con estos avances es posible afirmar que la tecnología a vapor permitiría optimizar aún más este proceso, lo que traería como consecuencia el aumento de la producción de panela reduciendo los costos.

La presente tesis busca encontrar mejoras con relación a la tecnología a vapor, como por ejemplo, se encuentra un mayor control en las temperaturas requeridas por fases, las cuales tienen un rango muy limitado en el que pueden mantenerse para que la panela pueda aumentar su producción, así como su calidad sin variar demasiado el coste que implica producirla; utilizando un sistema de control con válvulas permiten el paso de una cantidad deseada de vapor

para cada etapa, que es directamente proporcional a la energía que se requiere. Esto sería imposible trabajando directamente con los gases de combustión.

Otro aspecto importante en la producción es el consumo de combustible. Este puede reducirse mediante el uso de esta nueva tecnología, ya que se obtiene un mayor control sobre la cantidad de vapor necesaria para cada fase. Con esto se evitaría deforestar la zona y generar menos gases de combustión.

Tengo la satisfacción de agradecer al equipo del Laboratorio de Energía de la Universidad de Piura por la motivación y facilidades brindadas en el tiempo que permanecí. En particular, al Dr. Ing. Daniel Marcelo por su permanente apoyo y colaboración durante el desarrollo de esta tesis; al Dr. Ing. Rafael Saavedra y al Dr. Ing. Raúl La Madrid por facilitarme bibliografía y resolver mis consultas; a mis amigos los ingenieros Brayan Senk, Darwin Gamero y Angel Pineda por estar alentándome para finalizar mi tesis.

Del mismo modo, a mis padres, Jossy y Jorge, a mi hermana Flavia y a mis mejores amigos Guillermo y Paolo; quienes me brindaron su apoyo y me motivaron cuando más lo he necesitado y al fondo de la Facultad de Ingeniería INGENIUM por el financiamiento de esta tesis en el ámbito del proyecto "Diseño y modelación en estado estacionario de un prototipo de sistema de evaporación de múltiple efecto para jugos de caña de azúcar en la producción de panela granulada".

Tabla de contenido

	1
Capítulo 1. Caparalidadas da calderas	1
1 1. Teoría de calderas	3
1.1.1 Definición	3
1.1.1. Definición de vener	5 1
1.1.2. Generación de vapor	
1.2. Clasificación de calderas	5
1.2. Clasificación	5
1.2.1. For su instalación	5
1.2.2. For su instalación 1.2.3. De acuerdo con la posición del agua y de los gases de combustión	0
1.2.5. De dederdo con la posición del agua y de los gases de compusición 1.2.4. Por ubicación del hogar	/
1.2.5. Por circulación de los gases	/
1.2.6. Respecto a la forma de calefacción	9
1.2.7. De acuerdo con la presión de vapor que producen	9
1.2.8. Respecto al volumen de agua que contienen por unidad de superficie de	
calefacción (SC)	. 10
1.2.9. Según su utilización	. 10
1.2.10. Según la circulación del agua dentro de la caldera	. 10
1.2.11. Según tipo de combustible	. 10
1.3. Calderas más utilizadas	.11
1.3.1. Caldera acuotubular	.11
1.3.2. Caldera pirotubular	.14
1.4. Partes de una caldera	. 15
1.4.1. Horno de caldera (hogar)	. 15
1.4.1.1. Tipos de hogar en calderas	. 16
1.4.1.2. Evaporador primario (paredes de agua)	. 17
1.4.1.3. Parrilla	. 18
1.4.1.4. Alimentadores de bagazo	. 18
1.4.2. Calderín de vapor (superior)	. 19
1.4.3. Calderín de agua (inferior)	. 20
1.4.4. Evaporador secundario	. 20
1.4.5. Sobrecalentador	. 20
1.4.6. Economizador	. 22
1.4.7. Precalentador	. 23
1.4.7.1. Precalentador de aire recuperativo	. 24

1.4.7.2. Precalentador de aire regenerativo	24
1.4.8. Ventiladores de calderas	25
1.4.8.1. Ventiladores de tiro forzado	25
1.4.8.2. Ventiladores de tiro inducido	25
1.4.9. Chimenea	25
Capítulo 2 Fundamentos de termodinámica y transmisión de calor	27
2.1. Fundamentos de termodinámica	27
2.1.1. Combustión	27
2.1.1.1. Definición de combustión	27
2.1.1.2. Combustible	29
2.1.1.3. Tipos de combustión	29
2.1.1.4. Eficiencia de combustión	30
2.1.2. Ecuación de conservación de masa y energía en generadores de vapor	30
2.1.3. Temperatura adiabática de llama	32
2.2. Fundamentos de transferencia de calor	33
2.2.1. Conceptos generales	33
2.2.1.1. Mecanismos y leyes de transferencia	33
2.2.1.2. Transferencia de calor en un generador de vapor	36
2.2.1.3. Coeficiente de transferencia de calor global	36
2.2.2. Características físicas de los fluidos	39
2.2.2.1. Agua líquida	39
2.2.2.2. Aire	40
2.2.2.3. Gases de combustión	41
2.2.3. Convección en generadores de vapor	42
2.2.3.1. Convección forzada en el interior de los tubos	43
2.2.3.2. Convección forzada en el exterior de los tubos	46
2.2.4. Radiación en generadores de vapor	51
2.2.4.1. Radiación de la llama en cámara de combustión	51
2.2.4.2. Radiación de los gases de combustión hacia los bancos de tubos	54
2.2.5. Cálculo de entalpía de los fluidos	57
2.2.5.1. Agua y vapor de agua sobrecalentado	59
2.2.5.2. Aire	59
2.2.5.3. Gases de combustión	59
2.2.6. Diseño de superficies de intercambio de calor	60
2.2.6.1. Diferencia de temperatura media logarítmica	61
2.2.6.2. Cálculo general de superficies	62
2.3. Pérdidas de presión en generadores de vapor	63
2.3.1. Para flujos turbulentos en el interior de tubos	64
2.3.1.1. Caídas de presión distribuídas o pérdidas primarias	64
2.3.1.2. Caídas de presión concentradas o pérdidas secundarias	67
2.3.1.3. Caídas de presión en flujos a través de bancos de tubos	69
Capítulo 3 Balances de energía y masa	73
3.1. Hipótesis:	73
3.1.1. Datos iniciales	73
3.2. Balance de masa	74
3.2.1. Analisis del aire	14
3.2.2. Analisis del bagazo	75
5.2.5. Balance del agua-vapor	/ /
5.2.4. Balance de masa en la combustion	//
5.5. Balance de energia	83

3.3.1. Ecuación de conservación de la energía	
3.3.2. Calor aprovechable	
3.3.3. Ganancias de energía	
3.3.3.1. Energía por unidad de masa liberada por la combustión	
3.3.3.2. Energía por unidad de masa de aire entrante	
3.3.3.3. Energía por unidad de masa del bagazo entrante	
3.3.4. Pérdidas de energía	
3.3.4.1. Pérdida por calor sensible en gases de combustión	
3.3.4.2. Pérdida por combustión incompleta	
3.3.4.3. Pérdida por ceniza	
3.3.4.4. Pérdida por radiación	
3.4. Rendimiento del sistema	
Capítulo 4 Diseño y dimensionamiento de la caldera	
4.1. Bosquejo y datos de la caldera	
4.2. Requerimiento energético térmico	
4.3. Diseño de la cámara de combustión	
4.3.1. Balance energético.	
4.3.2. Dimensionamiento cámara de combustión	
4.4. Diseño de superficies de intercambio de calor	
4.4.1. Pantalla	
4.4.2. Sobrecalentador	103
443 Evaporador secundario	110
4 4 4 Economizador	117
4 4 5 Precalentador	123
446 Componentes complementarios	130
4 4 6 1 Calderín de vapor	130
4462 Tubos bajantes	130
4 4 6 3 Chimenea	131
4464 Ventiladores	131
4.5 Diagramas de metodología utilizada	132
Capítulo 5 Resultados	137
5 1 Balance de masa	137
5.2 Balance de energía	138
5.2. Diraño	130
5.4. Resultados de variación de parámetros	1 <i>37</i> 1 <i>4</i> 4
5.4.1 Variación de fluio másico de vanor producido	177 1/1/
5.4.2. Variación de flujo másico de vapor producido y humedad del bagazo	151
5.5. Validación	151
Capítulo 6 Mantenimiento y operación	155
6.1 Mantenimiento de una caldera bagacera	159
6.2. Macanismos de desgaste y tipo de fallas	157
6.2. Indicadores de mentanimiento	100
6.4. Técnicos de mantenimiento	103
Conclusiones	10 4 167
Closerie	107
Divisation hibliográficas	109 172
	1/3 177
Anexo 1. Configurates de color concecífico y entelnío	// 1// 170
Anexo 1. Coencientes de calor específico y entarpla	178
Anexo 2. Tablas termodinamicas de agua saturada	179
Anexo 5. Lablas termodinamicas de vapor sobrecalentado	181

Anexo 4. Propiedades del agua saturada según su temperatura	
Anexo 5. Información de tubos A-178 / SA-178 Gr A	

Lista de figuras

Figura 1. Curva de calentamiento de una sustancia a una determinada presión	5
Figura 2. Caldera Móvil	6
Figura 3. Caldera Fija	6
Figura 4. Caldera acuopirotubular o mixta	7
Figura 5. Caldera de hogar exterior (izquierda) y de interior (derecha)	8
Figura 6. Flujos de los gases de combustión en calderas escocesas	8
Figura 7. Traducción de la patente de los tubos de agua cónicos de Galloway en 1866	9
Figura 8. Sistemas de circulación simplificados	.11
Figura 9. Esquema de transmisión de calor de una caldera acuotubular	. 12
Figura 10. Esquema de caldera acuotubular de tubos rectos	. 13
Figura 11. Configuración de calderas de tubos curvos	. 14
Figura 12. Caldera Pirotubular	. 14
Figura 13. Hogar de una caldera en configuración "D"	. 16
Figura 14. Componentes del calderín de vapor	. 19
Figura 15. Calderín inferior o de agua en una caldera tipo "D"	. 21
Figura 16. Evaporador secundario en una caldera bagacera	. 21
Figura 17. Localización del sobrecalentador en una caldera bagacera	. 22
Figura 18. Localización el economizador en una caldera bagacera	. 23
Figura 19. Partes internas de un precalentador de aire	. 24
Figura 20. Localización chimenea en una caldera	. 26
Figura 21. Composición del aire atmosférico.	. 28
Figura 22. Concentración de gases por volumen y eficiencia de combustión	. 31
Figura 23. Cámara de combustión adiabática	. 32
Figura 24. Variación de la temperatura adiabática según el dosado	. 33
Figura 25. Área de paso de sección (A) y perímetro	. 47
Figura 26. Dimensiones características del arreglo de tubos transversales al flujo en línea	
(arriba) y en forma escalonada (abajo)	. 48
Figura 27. Factor de disposición f_a para arreglos de tubos en línea	. 49
Figura 28. Factor de disposición f_a para arreglos de tubos escalonados	. 50
Figura 29. Factor de eficiencia para paredes irradiadas	. 54
Figura 30. Relación x_r/d_o para tubos en línea	. 56
Figura 31 . Relación x_r/d_o para tubos escalonados	. 57
Figura 32. Variación de temperaturas para flujos paralelos	. 61
Figura 33. Variación de temperaturas para flujos contracorriente	. 62
Figura 34. Diagrama de Moody para hallar el factor de fricción	. 67
Figura 35. Rugosidad relativa de los materiales de las tuberías y factor de fricción para flu	jo
en régimen de turbulencia total	. 66

Figura	36.	Factor ζ para variaciones abruptas de diámetro	. 68
Figura	37.	Factor ζ para codos	. 68
Figura	38.	Otros valores del factor ζ	. 69
Figura	39.	Factor f_a para pérdidas de presión de un banco de tubos en línea	.70
Figura	40.	Factor f_a para pérdidas de presión de un banco de tubos escalonados	.70
Figura	41.	Factor f_a para pérdidas de presión de un banco de tubos	.71
Figura	42.	Sistema Termodinámico de Flujo Abierto	.74
Figura	43.	Bosquejo de la caldera a diseñar	. 92
Figura	44.	Valores mínimos de R para generadores de vapor de circulación natural	111
Figura	45.	Diagrama de flujo de metodología de cálculo de balances de masa y energía	133
Figura	46.	Diagrama de flujo de metodología de diseño y dimensionamiento	134
Figura	47 .	Diagrama de Sankey del consumo térmico en la caldera	135
Figura	48.	Caída de temperatura de los gases de combustión de caldera diseñada	142
Figura	49 .	Caída de temperatura de los gases de combustión de una caldera tradicional	142
Figura	50.	Perfil de temperaturas vs. superficie acumulada de caldera diseñada (1 ton/h)	143
Figura	51.	Perfil de temperaturas vs superficie acumulada de caldera 100 ton/h ($450^{\circ}C - 4$.3
		bar)	143
Figura	52.	Flujo másico de vapor vs. flujo másico de bagazo	145
Figura	53.	Flujo másico de vapor vs. calor aprovechable	145
Figura	54.	Flujo másico de vapor vs. pérdidas por radiación	146
Figura	55.	Flujo másico de vapor producido vs. energía liberada por unidad de	147
Figura	56.	Flujo másico de vapor producido vs. calor entrante de aire primario	147
Figura	57.	Flujo másico de vapor producido vs. calor entrante por combustible	148
Figura	58.	Flujo másico de vapor producido vs. pérdidas por combustión incompleta	148
Figura	59 .	Flujo másico de vapor producido vs. pérdidas por ceniza	149
Figura	60.	Flujo másico de vapor producido vs. pérdidas por chimenea	149
Figura	61.	Flujo másico de vapor vs. relación vapor/bagazo	150
Figura	62 .	Flujo másico de vapor vs. rendimiento energético	150
Figura	63.	Relación vapor-bagazo vs. humedad del bagazo	151
Figura	64.	Rendimiento de caldera vs. humedad del bagazo	151
Figura	65.	Flujo másico de vapor vs. humedad del bagazo	152
Figura	66 .	Rendimiento de la caldera en función del flujo másico de vapor producido y la	1 = 0
т.		humedad del bagazo	153
Figura	67.	Perdidas por radiación en función del flujo másico de vapor producido y la	1 ~ 4
D .	(0	humedad del bagazo	154
Figura	68.	Relacion vapor-bagazo en funcion al flujo másico de vapor y la humedad del	1 7 1
D .	<u> </u>		154
Figura	09 .	Flujo másico de bagazo consumido en función al flujo másico de vapor produci	155
F !	70	y a la numedad del bagazo	155
Figura	/U.	Caldera DZH alimentada por biomasa.	150
r igura	11. 77	Prior de la ubicación de felles en calderes.	1J/ 161
r igura	14.	Porcentaje de la ubicación de falla en calderas	101
Figura	13. 71	Tiempo de recuperación de fallas de los distintos componentos de la caldera	102 164
Figure	74. 75	Comparación de ensavos no destructivos según ASME	165
Figura	13. 76	Técnicas de ansavos no destructivos para cada componente de la caldera	100
r igui a	10.	reencas de ensayos no destructivos para cada componente de la caldera	100

Lista de tablas

Tabla 1. Pesos atómicos y moleculares de elementos presentes en la combustión	29
Tabla 2. Valores de viscosidad dinámica (μ) en 10 ⁻⁶ kg/m s del agua líquida	40
Tabla 3. Valores del factor de profundidad (f_d) según el número de filas	47
Tabla 4. Factor K _r	58
Tabla 5. Coeficientes de entalpía de gases de combustión	60
Tabla 6. Composición del aire estándar	74
Tabla 7. Flujos másicos del balance de masa de la caldera	137
Tabla 8. Flujos volumétricos del balance de masa de la caldera	138
Tabla 9. Análisis energético específico	138
Tabla 10. Análisis energético instantáneo	139
Tabla 11. Rendimiento de caldera diseñada	139
Tabla 12. Requerimiento de energía térmica en cada intercambiador de calor	140
Tabla 13. Resultados de cámara de combustión	140
Tabla 14. Coeficientes de transferencia de calor en cada intercambiador de calor	141
Tabla 15. Áreas de transferencia de calor y temperaturas de intercambiadores de calor	141
Tabla 16. Variación de presión en los distintos componentes de la caldera	144
Tabla 17. Parámetros de caldera DZH alimentada por biomasa	156
Tabla 18. Mecanismos de desgaste por componente de caldera	161
Tabla 19. Causas de falla de una caldera	162
Tabla 20. Influencia de los mecanismos de falla	162
Tabla 21. Tipos de falla de una caldera	163
XEV	

Introducción

La panela o azúcar orgánica es un edulcorante obtenido de la caña de azúcar, que en comparación con la azúcar refinada es más saludable y nutritiva. Su procesamiento, a lo largo de los años, ha venido evolucionando, por el cual actualmente se apuesta el uso de la tecnología a vapor, la que permite, un aumento no solo de cantidad de producción, sino también de la calidad de esta, sumado un mejor uso de la materia prima necesaria que conlleva a un sistema eco amigable.

A pesar de que la India aún sigue siendo el mayor productor de panela a nivel mundial con casi el 65% de panela producida; Colombia, que actualmente se encuentra en el siguiente puesto con el 13% de la producción, ha sido uno de los países que más ha invertido en investigación de nuevas técnicas de procesamiento, especialmente en la antes mencionada.

En la serranía del departamento de Piura, específicamente en la provincia de Ayabaca, los pobladores aún trabajan con la modalidad tradicional que consiste en hacer hervir los jugos de la caña en las diferentes etapas utilizando como fuente de calor los gases de combustión producto de la quema del bagazo, donde existe el problema de no poder controlar bien la temperatura en cada etapa.

El presente trabajo consiste en diseñar una caldera o generador de vapor que sea alimentado por bagazo y que dicho vapor sustituya a los gases de combustión por el paso de las diferentes etapas como esta descrito en la modalidad tradicional, debido a que con dicho vapor es mucho más factible controlar las temperaturas.

En el capítulo 1 se investiga acerca de las generalidades de las calderas y sus partes. En el capítulo 2 se resume los fundamentos de termodinámica y transmisión de calor referidos a

las calderas. En el capítulo 3, en base a los anteriores capítulos, se realiza el balance de masa y energía del generador de vapor. En el capítulo 4, al igual que en el anterior, se calcula el dimensionamiento de la caldera y se concluye el diseño de esta. En el capítulo 5, se exponen todos los resultados obtenidos a lo largo de la tesis. Por último, en el capítulo 6, se resume una serie de recomendaciones para el mantenimiento y operación de la caldera.

Capítulo 1 Generalidades de calderas

5.5%

1.1. Teoría de calderas

1.1.1. Definición

Caldera es un recipiente metálico cerrado destinado a producir vapor o calentar agua mediante la acción del calor a una temperatura mayor a la del ambiente y presión mayor a la atmosférica. La liberación del calor necesario proviene del hogar u horno de la caldera, que es el lugar donde ocurre la combustión (en el apartado 1.4.1. se explicará con más detalle). El generador de vapor es el conjunto de la caldera y sus accesorios.

Este vapor se puede destinar a una gran variedad de aplicaciones como la producción de energía eléctrica con turbinas de vapor o el calentamiento de procesos.

Entre los parámetros que se deben tener en cuenta al momento de diseñar una caldera tenemos:

- Flujo másico de vapor
- Presión y temperatura del vapor deseados
- Parámetros ambientales de localización
- Calidad del agua disponible
- Combustible
- Diseño de quemadores y hogar

La calidad del agua es muy importante en la producción de vapor, ya que, al pasar por los delgados tubos intercambiadores de calor, si esta presenta impurezas, se irán acumulando en las paredes, llegando a obstruirlos por completo.

Otro aspecto importante en el mantenimiento es el exterior de los tubos ya que impurezas de la combustión podrían quedar incrustadas en ellos.

1.1.2. Generación de vapor

Como se ha explicado la generación de vapor consiste en el cambio de fase de agua líquida a agua gaseosa. En palabras comunes, el paso de agua líquida a vapor, el cual ha sido producido con unas necesidades concretas para la aplicación que se le vaya a dar. Este proceso cuenta de tres etapas.

La primera consiste en elevar la temperatura del agua hasta su punto de ebullición. El calor necesario para obtenerlo es igual a multiplicar la masa de agua a calentar, la diferencia de temperatura y su calor específico a presión constante, el cual es la cantidad de calor necesaria a suministrar a una unidad de masa para elevar su temperatura en una unidad y varía de acuerdo con la temperatura. Este calor se le conoce como calor sensible, ya que eleva la temperatura sin modificar la estructura molecular.

La segunda etapa consiste en cambiar el estado del agua a vapor (modifica su estructura molecular). Se obtiene al multiplicar la masa de agua por el calor latente, el cual es la cantidad de calor requerido por cantidad de sustancia para cambiar de estado o fase por unidad de masa. A este calor se le conoce como calor latente de vaporización.

La tercera etapa es muy parecida a la primera. Esta vez se calienta vapor de agua por lo que la energía a suministrar es igual a la multiplicación de la masa de vapor de agua por el calor específico a presión constante del vapor y la diferencia de temperaturas. A este vapor con temperatura mayor a la de saturación se le conoce como vapor sobrecalentado.

En la figura 1 se puede apreciar la curva de calentamiento del agua. Los segmentos \overline{AB} , \overline{CD} y \overline{EF} son calores sensibles. En cambio, los segmentos \overline{BC} y \overline{DE} son los calores latentes de fusión y vaporización respectivamente.

1.1.3. Terminología de calderas

La producción de vapor en calderas se expresa frecuentemente en kilogramo de vapor producido por hora a una temperatura y presión de diseño. Sin embargo, como el vapor a diferentes valores de temperatura y presión posee distintos valores de energía, la capacidad de las calderas se expresa en forma de calor total transmitido en kJ/h.

Otra unidad común es la BHP en inglés *boiler horsepower* (caballo de fuerza de caldera), definida por la ASME como la evaporación en términos de vapor saturado seco de 34.5 libras por hora de agua (15.65 kg por hora) a una temperatura de 100°C y a una presión atmosférica de 101.325 kPa.

Figura 1. Curva de calentamiento de una sustancia a una determinada presión Fuente: (Susana, 2015)

1.2. Clasificación de calderas

1.2.1. Por su posición

• Verticales, las cuales son calderas que tienen tubos en forma vertical. Trae como ventaja un tamaño reducido (largo y ancho), se aumenta la tolerancia del nivel de agua y posee un mantenimiento principal más simple. Como desventajas se encuentra su altura, la pequeña área que existe para la rejilla, tubos cortos para reducir altura, gran pérdida de calor por la chimenea y sedimentos pueden depositarse en la lámina del tubo inferior (la placa sobre la caja de fuego) aislando el agua del calor generando que la placa se queme.

• Horizontales, con tubos en disposición horizontal. Son la forma clásica de calderas.

1.2.2. Por su instalación

- Móviles o portátiles (ver figura 2). Las calderas móviles forman parte de un vehículo diseñadas para propulsarlos y las calderas portátiles están montadas sobre vehículos (camiones, barcos u otro aparato móvil) que son diseñadas para disponer de su funcionamiento en múltiples locaciones, dependiendo de su necesidad.
- Fijas o estacionarias (ver figura 3), son todas aquellas calderas que forman parte permanentemente en un lugar destinado para su aplicación y no pueden ser trasladas.

Figura 2. Caldera Móvil Fuente: (Energías Industriales, s.f.)

Figura 3. Caldera Fija Fuente: (Soluciones Energéticas, s.f.)

1.2.3. De acuerdo con la posición del agua y de los gases de combustión

- Acuotubulares o calderas por las cuales circula agua por el interior de múltiples tubos.
- Pirotubulares o calderas por las cuales circula los gases de combustión por el interior de múltiples tubos.
- Acuopirotubular (con tubos múltiples de agua y de humo). (Ver figura 4).

1.2.4. Por ubicación del hogar

- De hogar exterior (ver figura 5). El hogar está construido fuera de la carcasa de la caldera, parcialmente cubierto o sin paredes refrigeradas por agua.
- De hogar interior: Tipo escocés (ver figura 5). En este tipo de calderas están formadas por un cuerpo cilíndrico principal de fondos planos o convexos, conteniendo en su interior uno o dos tubos sumergidos en agua, donde se instala el hogar (Campos Grijalva, Espinoza Eusebio, & López Martinez, 2013).

1.2.5. Por circulación de los gases

- Recorrido de un sentido (de un paso), los gases hacen un solo recorrido a través de los tubos.
- Recorrido de retorno simple (de dos pasos), los gases realizan dos recorridos a través de los tubos.

• Recorrido de retorno doble (de tres pasos), los gases realizan tres recorridos a través de los tubos (ver figura 6).

Figura 5. Caldera de hogar exterior (izquierda) y de interior (derecha) Fuente: (Estrucplan Consultora S.A., 2011)

Figura 6. Flujos de los gases de combustión en calderas escocesas Fuente: (Abarca, 2018)

1.2.6. Respecto a la forma de calefacción

- Cilíndrica sencilla de hogar exterior
- Con un tubo hogar, el cual es un tubo central sumergido en el agua que hace de hogar donde los gases de combustión ceden calor a este tubo por radiación. Posteriormente son obligados a pasar por el resto de los tubos menores que también están sumergidos en agua. Puede ser liso o corrugado (Escobar & Duvisón, 2012).
- Con dos tubos hogares (lisos o corrugados)
- Con tubos Galloway (ver figura 7), que son tubos cónicos que aumentan la superficie de calefacción y la circulación en la caldera. Se puede aplicar en calderas horizontales o verticales.
- Con tubos múltiples de humo (igneotubulares o pirotubulares)
- Con tubos múltiples de agua (hidrotubulares o acuotubulares)
- Con tubos múltiples de agua y tubos múltiples de humo (acuopirotubular o mixtas)

Patente de Galloway de tubos de agua cónicos para generadores de vapor

Los tubos anteriores están fabricados en forma cónica que permitirá que la brida inferior pase por el orificio en la parte superior del conducto de humos de la caldera, lo que hace que su introducción en las calderas de humos ordinarias sea una operación sencilla y con las siguientes ventaias:

- La potencia de la caldera aumenta considerablemente y los conductos de humos se refuerzan materialmente.
- La circulación del agua ha mejorado mucho y se ha evitado la expansión desigual, con los males que la acompañan.
- Se reduce la responsabilidad de cebar.

Estos tubos han estado en uso desde hace más de 14 años, y más de 22,000 están en funcionamiento en varias partes del país con los mejores resultados.

Pueden ser reparados por cualquier fabricante de calderas, pero solo pueden obtenerse de los titulares de la patente: W. y J. Galloway & Sons, Ingenieros y caldereros, Manchester.

Únicos fabricantes de RIGBY'S, barras de fuego circulares Sección de la caldera de Cornualles la disposición de los conductos de humos, patentadas, que se recomiendan encarecidamente por mostrando la aplicación de tubos Galloway siendo el horno de la misma construcción ser económicas y eficaces

Las calderas ya sean verticales u horizontales, se benefician especialmente del uso de estos tubos, ya que el calor es tan intenso que es absolutamente necesaria una circulación completa del agua para evitar fugas y cebado.

Figura 7. Traducción de la patente de los tubos de agua cónicos de Galloway en 1866 Fuente: (Grace's Guide To British Industrial History, 2019)

1.2.7. De acuerdo con la presión de vapor que producen

Sección de la Caldera Galloway, que muestra

que en la caldera común de dos hornos

• De baja presión (hasta $4 \frac{kg}{cm^2}$ o 392 kPa). Mayormente son calderas de agua caliente.

- De mediana presión (sobre 4 $\frac{kg}{cm^2}$ hasta 20 $\frac{kg}{cm^2}$ o 392 kPa 1960 kPa). Generalmente utilizadas en aplicaciones de industria donde se requiere vapor saturado.
- De alta presión (sobre $20 \frac{kg}{cm^2}$ hasta $225 \frac{kg}{cm^2}$ o 1960 kPa 22050 kPa). Son utilizadas generalmente en ciclos de potencia.
- Supercríticas (sobre 225 kg/cm² o 22050 kPa y 374 °C). Utilizadas en grandes plantas de producción de energía eléctrica.

1.2.8. Respecto al volumen de agua que contienen por unidad de superficie de calefacción (SC)

- De gran volumen de agua (más de 150 $l \times m^2 de SC$). En su mayoría son calderas acuotubulares que producen vapor sobrecalentado.
- De mediano volumen de agua (entre 70 y 150 $l \times m^2 de SC$). Son mayormente calderas pirotubulares de baja y mediana presión.
- De pequeño volumen de agua (menos de 70 $l \times m^2 de SC$). Generalmente se utilizan para producción de vapor saturado.

1.2.9. Según su utilización

- De agua caliente, es decir, solo calientan el agua sin producir vapor.
- De vapor saturado, donde se calienta el agua hasta de su temperatura de ebullición generando vapor.
- De vapor sobrecalentado, las cuales calientan el vapor por encima de su temperatura de ebullición.

1.2.10. Según la circulación del agua dentro de la caldera

- Circulación natural, donde el agua circula por efecto térmico (ver figura 8).
- Circulación forzada, donde el agua se hace circular mediante bombas (ver figura 8).

1.2.11. Según tipo de combustible

• Combustible gaseoso. Por ejemplo: gas natural, gas de hulla, propano, butano, etc. Las calderas que utilizan un combustible de este tipo tienden a tener un riesgo de explosión alto por el combustible no quemado.

- Combustible líquido. Por ejemplo: metanol, etanol, gasolina, benceno, aceite, etc. Estos combustibles requieren que se calienten para disminuir su viscosidad (30 40 °C) y poder bombearlos hacia los quemadores.
- Combustible sólido. Por ejemplo: carbón, bagazo, pajilla de arroz, etc. Se debe utilizar molinos o grillas para pulverizarlos antes de la combustión. El diseño del hogar es muy complejo teniendo en cuenta el ingreso de aire suficiente y su correcta mezcla con el combustible. En general resultan más voluminosos que los hogares de calderas que consumen combustibles líquidos o gaseosos.

1.3. Calderas más utilizadas

1.3.1. Caldera acuotubular

Es la caldera donde el agua circula dentro de unos tubos, la misma que es calentada dentro de la caldera por medio de la quema de un combustible (ver figura 9).

En general este tipo de calderas están destinadas para producir altas presiones y para elevadas potencias, y contienen poco volumen de agua, por lo que dan una evaporación más rápida.

En contraparte tenemos que es afectada por el consumo de vapor y la alimentación del agua, es decir, es susceptible a las fluctuaciones de presión y carga.

Una caldera de este tipo requiere de un mantenimiento muy costoso y laborioso ya que, como el agua circula por los tubos, es de exigencia que esta posea una calidad muy elevada puesto que las incrustaciones en los tubos reducen notablemente la transferencia de calor.

Por este motivo su rendimiento es un poco menor en comparación a las pirotubulares.

Cabe recalcar que como tiene un volumen menor de agua y esta se encuentra dentro de los tubos intercambiadores de calor, su riesgo de explosión es muy bajo, limitándose a unos pocos tubos.

Su producción se expresa en lb/hora de vapor producido o MBTU/hora, pueden acercarse a las 10'000,000 de libras por hora con 2500 psi. Se utilizan desde 300 psi por lo general, sin embargo, pueden trabajar desde los 120 psi.

Figura 9. Esquema de transmisión de calor de una caldera acuotubular Fuente: (Emoscopes, 2006)

Dentro de la división de calderas acuotubulares, podemos subdividirlas según la disposición de los tubos, que pueden ser calderas de tubos rectos (ver figura 10) o calderas de tubos curvos. La primera subdivisión se remonta a los orígenes de las calderas, en cambio, la

segunda son las calderas modernas que presentan mejores características de presión y temperatura, producción de vapor de mejor calidad, libre dilatación y contracción del conjunto, forma más compacta, entre otras. Debido a esto se desplazó a la disposición de tubos rectos (Shield, 1979).

Por último, las calderas de tubos curvos se pueden separar en calderas de tubos doblados y calderas de tubos doblados con paredes de agua. La diferencia es que estas últimas contienen bancos de tubos llamados paredes de agua que revisten el hogar que evitan los desgastes por alta temperatura y aumentan la producción de vapor.

Las calderas de tubos doblados con paredes de agua se estandarizaron en tres diseños: calderas tipo A o U invertida, tipo O y tipo D, que se aprecian en la figura 7.

Las calderas de tipo A contienen un calderín de vapor (superior) y dos de lodo (inferiores), las de tipo D tienen un calderín de vapor encima del de lodo unidos por una serie de tubos, donde el resto de los tubos se encuentran en disposición horizontal uniéndolos a las paredes de agua. Finalmente, las de tipo O tiene igual un calderín superior encima al calderín de lodo unidos por tubos que asemejan la letra O.

Figura 10. Esquema de caldera acuotubular de tubos rectos Fuente: Caldera Acuotubular (Sánchez, 2016)

Figura 11. Configuración de calderas de tubos curvos Fuente: (Kohan, 2000)

1.3.2. Caldera pirotubular

Una caldera pirotubular, en general, es menos costosa que una acuotubular, además de ocupar un menor tamaño para una de igual producción.

Contiene una gran cantidad de agua, ya que en esta son a través de los ductos por donde pasan los gases de combustión, transfiriéndole calor al agua almacenada en la caldera (ver figura 12). Por este motivo no es susceptible a las fluctuaciones de vapor y presión.

Figura 12. Caldera Pirotubular Fuente: (Babcock Wanson, s.f.)

Ya que son los gases de combustión los que pasan por los tubos, posee un mantenimiento más sencillo y no requiere de una calidad de agua muy elevada. Se le puede hacer inspecciones ordinarias, donde raramente son necesarias pruebas destructivas.

Al estar llena de agua hirviendo, con un volumen muy grande, en un recipiente cerrado el riesgo de explosión es muy elevado.

Su capacidad va desde 1 BHP hasta 900 BHP con presiones de 150 psi hasta los 250 psi.

1.4. Partes de una caldera

Esta sección de la tesis ha sido redactada en base a lo investigado por el ingeniero Andrade-Liviapoma (2015), que a su vez extrajo la información con las referencias de (Kohan, 2000), (Severns & Miles, 1982), (Shield, 1979), (Hugot E. , 1986), (The Babcock & Wilcox Company, 1992) y (Fernández Díez, 2010).

1.4.1. Horno de caldera (hogar)

El hogar u horno de la caldera es donde ocurre la combustión, en este caso del bagazo, donde se libera energía (calor) y debe aprovecharse para la evaporación del agua, produciendo así vapor (ver figura 13).

Está diseñado y dimensionado con tal forma que se busca una combustión completa y que de alguna manera vaya perdiendo la ceniza que se produce luego de dicha reacción.

Por otro lado, debe tener suficiente altura para la circulación del agua, tubos de diámetro suficiente para evitar que estos se quemen y evitar impurezas en la mezcla de flujo.

Finalmente, debe tener espacio suficiente para evitar que la llama deteriore las paredes de los tubos. Y que produzca NOx a niveles aceptables. Los quemadores son los encargados de suministrar y acondicionar el combustible para mezclarlo con el aire y obtener una buena combustión.

1.4.1.1. Tipos de hogar en calderas

a. Hogar de gradilla

Es el más clásico y el empleado con mayor frecuencia. Está formado por pequeñas placas de fundición dispuestas en escalones. Consta de tres partes: parte superior o placa anterior (aquí el bagazo se seca antes de entrar en combustión), parrilla (permite el paso del aire dependiendo del tamaño del espacio entre los eslabones) y el cenicero (superficie inclinada en la parte inferior de la parrilla donde combustiona el bagazo y la ceniza cae entre las barras).

Figura 13. Hogar de una caldera en configuración "D" Fuente: Nelly (Ejemplos de tipos de calderas, 2020)

b. Hogar de herradura

Llamado también hogar Cook. Aquí el bagazo cae directamente en forma cónica hacia el hogar que tiene forma de herradura, donde además por medio de toberas se inyecta aire (es mejor si fuese caliente) hacia el bagazo para que se consuma. Tiene una combustión más eficiente que el hogar de gradilla, aunque signifique que debe ser un poco más alto; no obstante, tiene excelentes resultados en rendimiento energético.

c. Hogar Ward

Similar al hogar Cook. Consiste en una plancha de hierro colado que permite la circulación de aire, aquí el combustible de biomasa se quema en el centro de él como una pila coniforme.

No obstante, presenta inconvenientes por la exigencia de colocar un hogar exterior para que el calor se concentre en la biomasa en combustión.

Se requiere un tiro más potente que en los otros tipos y se le puede añadir una subcámara de presecado, donde pasa a llamarse cámara Ward tipo CIMPA (Gordillo & García, 1992).

d. Hogar distribuidor

Es el modelo más reciente de los hogares. Al igual que los dos últimos no posee una pared cerrada y consta únicamente de un espacio ubicado entre los tubos del generador de vapor y una parrilla especial plana.

La alimentación consiste en dejar caer el bagazo donde este es empujado violentamente hacia el hogar por aire a presión a través de un tubo calado. Así el bagazo pierde humedad y se quema mientras va cayendo al hogar.

Los espacios para el aire en la parrilla constituyen un 3% a 5% de su área, donde el mayor porcentaje de aire requerido para la combustión viene suministrado por el aire a presión que impulsa el bagazo.

La construcción de este hogar es económica, siendo su mantenimiento muy fácil (la remoción de cenizas y limpieza). Por último, su eficiencia mejora al limitar el exceso normal de aire al 30%.

1.4.1.2. Evaporador primario (paredes de agua)

Es la superficie evaporativa que cubre total o parcialmente las paredes del hogar. Su función es de reducir la transferencia de calor hacia los elementos estructurales y las pérdidas de calor al exterior.

Captan agua de los colectores inferiores de la caldera o calderín inferior, la cual proviene de los tubos de bajada o downcomers, recibiendo radiación para luego dirigirse a los colectores superiores como mezcla líquido vapor, alimentando así al calderín superior.

En cuanto a su diseño, los tubos deben ir espaciados lo menos posible para poder aumentar la transferencia de calor.

1.4.1.3. Parrilla

Componente que se encarga de sostener el bagazo en combustión, permitiendo el paso del aire primario y de la remoción periódica de la ceniza que va cayendo del combustible quemado. Un buen diseño implica un mejoramiento en la eficiencia del hogar. Los tipos de parrillas que se utilizan son:

- Parrilla fija
- Parrilla basculante (se remueven las cenizas manualmente)
- Parrilla viajera o mecánica (descarga continua)
- Parrilla inclinada tipo *pinhole*, estas han sido categorizadas como la mejor opción para la quema de bagazo en centrales térmicas, ya que tiene una limpieza automática inyectando vapor alternando las zonas haciendo que las cenizas sean llevadas al cenicero.

1.4.1.4. Alimentadores de bagazo

Dispositivos que se encargan de alimentar y distribuir el bagazo que entrará en combustión en el hogar. Pueden ser mecánicos o neumáticos. Estos últimos lo empujan hacia la parrilla mediante chorros de aire caliente.

Estos alimentadores también cumplen la función de controlar la cantidad de alimentación de bagazo, manteniendo una velocidad uniforme con una adecuada relación de airecombustible.

1.4.2. Calderín de vapor (superior)

Aquí se realiza la separación de la mezcla líquido-vapor que proviene de las superficies evaporativas. Es también la entrada de agua de alimentación en algunos tipos de calderas. Van acoplados los tubos de generación de vapor y existe una salida de vapor hacia el sobrecalentador contando con válvulas de alivio para protección.

El método de separación de líquido vapor se lleva a cabo en un separador mecánico o en un separador ciclónico.

Entre los criterios de diseño que debe tener, están: entregar un vapor limpio, libre de humedad (alta calidad de vapor), debe proveer un volumen de agua adecuado para casos de emergencia y debe poder proporcionar todo el espacio suficiente para la llegada de los tubos de generación de vapor.

El calderín superior cuenta con la tubería de agua de alimentación, la tubería de dosificación de químicos, la tubería de muestreo, la faja guía (dirige la mezcla líquido vapor hacia los separadores), los separadores de vapor, los secadores de vapor, los limpiadores y la caja de secado como se puede ver en la figura 14.

Figura 14. Componentes del calderín de vapor Fuente: Kohan (2000)

1.4.3. Calderín de agua (inferior)

Estos calderines son la recolección del agua y lodo en el fondo del banco de tubos evaporadores (ver figura 15). Pueden estar dentro o fuera de la caldera. En el caso de calderas bagaceras se pueden reemplazar por varios tubos colectores de menor diámetro.

Funciona también como colector-distribuidor. Es importante mencionar que debe mantener un nivel mínimo de agua durante la marcha.

1.4.4. Evaporador secundario

Este evaporador aumenta la calidad del vapor, donde el diámetro de sus tubos generalmente es de 2 pulgadas o incluso menores de 1 pulgada. Posee dos colectores, uno superior y otro inferior, que poseen una forma característica de "D" (ver figura 16), esto es debido a que transporta una mezcla de líquido-vapor, donde el vapor avanza hacia el colector superior mientras que el agua cae por la superficie de los tubos (Andrade-Liviapoma, 2015). Otros aspectos a los que se deben la forma de "D" son:

- Aísla el calor de la caldera creando una pantalla entre el colector superior e inferior.
- La forma de "D" de los tubos dejan pasar los gases de combustión hacia el economizador.

La transferencia de calor se debe a que el fluido que se encuentra desplazándose en contacto con la superficie del evaporador de donde absorbe el calor para luego mezclarse con el resto de fluido frío. Esto es posible gracias al movimiento del fluido producido por la diferencia de densidades debido a la diferencia de temperaturas.

1.4.5. Sobrecalentador

El proceso de sobrecalentamiento consiste en añadir calor al vapor saturado a presión constante, para así conseguir vapor seco, por lo que tiene más temperatura que la indicada en diagrama T - v a una presión constante.

El sobrecalentador es un conjunto de tubos que se utiliza en el proceso de sobrecalentamiento (ver figura 17). Para el problema de acumulación de ceniza se sugiere:

- Aumentar distancia entre soportes de tubos.
- Aumentar distancia entre tubos.
• Reducir tubos por fila

Figura 16. Evaporador secundario en una caldera bagacera Fuente: (Mitre Engenharia Ltda., 2008)

Existen tres tipos de sobrecalentadores:

- a) De convección : están protegidos de la radiación directa del hogar.
- b) De radiación : son colocados directamente en el hogar reemplazando parcial o totalmente a las paredes de agua.
- c) De fuego separado: son utilizados cuando no es práctico tenerlos dentro de la caldera.

Figura 17. Localización del sobrecalentador en una caldera bagacera Fuente: (Mitre Engenharia Ltda., 2008)

1.4.6. Economizador

Son las partes de la caldera que tienen la función de aumentar el rendimiento de esta, absorbiendo el calor presente aún en los gases de combustión cuando dejan la zona de transferencia de calor.

Al igual que las demás superficies termo intercambiadoras, están compuestos por banco de tubos por los cuales circula agua líquida, los cuales reducen la posibilidad de que existan choques térmicos que son cambios súbitos en la temperatura, lo que genera tensiones elevadas dentro de los materiales. En las calderas bagaceras suele ir ubicado entre el evaporador secundario y el precalentador (ver figura 18).

En cuanto a los criterios de diseño, el espaciado debe ser el menor posible para facilitar el intercambio de calor y el espaciamiento longitudinal debe ser como mínimo 1.25 veces el diámetro externo.

Figura 18. Localización el economizador en una caldera bagacera Fuente: (Mitre Engenharia Ltda., 2008)

1.4.7. Precalentador

Al igual que el economizador, el precalentador es un elemento de la caldera que busca recuperar el calor restante de los gases de combustión, en este caso para transferirlo al aire del primario necesario en la combustión, aumentando así la eficiencia de esta (ver figura 19). Cabe resaltar que no es necesario su utilización.

Está ubicado entre el economizador y la chimenea, es decir, entre la salida de los gases de combustión de la caldera y la chimenea.

Existen dos tipos de precalentadores, entre los más comunes: los recuperativos y los regenerativos. En los últimos años, la tendencia ha sido que para combustibles líquidos y gaseosos se utilice los regenerativos, y para combustibles sólidos los recuperativos.

1.4.7.1. Precalentador de aire recuperativo

Los gases de combustión pasan a través de superficies de intercambio de calor (tubos) en forma directa y continua hacia el aire más frío, estando separado de este a través de una pared que separa ambos fluidos. Su rendimiento es bajo, pero tiene ventajas de baja corrosión siendo utilizado en fábricas de azúcar (Hugot E. , 1986).

Figura 19. Partes internas de un precalentador de aire Fuente: Fernández Díez (2010)

1.4.7.2. Precalentador de aire regenerativo

Consiste en un cilindro rotativo que por un lado ingresan los gases de combustión provenientes de la caldera y por el otro la toma de aire. Dentro de este cilindro existen láminas delgadas de acero que forman un laberinto por donde pasan ambos fluidos. Debido a las diferencias de presiones existe entre 8 a 10% de fuga del lado del aire (Andrade-Liviapoma, 2015).

El calor es transferido a través de las láminas con alta eficiencia debido a la rotación de estas donde permiten que la temperatura del metal sea uniforme.

1.4.8. Ventiladores de calderas

Para el tiro mecánico de las calderas generalmente se utilizan ventiladores, los cuales son rodetes o impulsores giratorios rodeados de una envolvente estática o carcasa, que crean una diferencia de presión produciendo movimiento de un fluido gaseoso.

En cuanto a los tipos, tenemos: los de tiro forzado, los de tiro inducido y los de tiro equilibrado. Cabe mencionar, que para las calderas bagaceras, se utiliza de tiro equilibrado que tiene ventiladores tanto de tiro forzado como inducido.

1.4.8.1. Ventiladores de tiro forzado

Es el tipo de ventilador que extrae aire del ambiente para inyectarlo al hogar de la caldera con el objetivo de mejorar la combustión.

1.4.8.2. Ventiladores de tiro inducido

Es el tipo de ventilador que extrae gases de combustión provenientes de la chimenea de la caldera.

1.4.9. Chimenea

La chimenea es el elemento que tiene como función llevar los gases de combustión que han perdido la mayor cantidad de calor al exterior de la caldera (ver figura 20), posee un tiro natural generado por la diferencia de presión de los gases de combustión, ayudando a la evacuarlos y a controlar la contaminación ambiental.

Capítulo 2

Fundamentos de termodinámica y transmisión de calor

2.1. Fundamentos de termodinámica

2.1.1. Combustión

2.1.1.1. Definición de combustión

Las reacciones de combustión son todas las reacciones químicas oxidantes de naturaleza exotérmica, es decir, liberan energía y se realizan un tiempo relativamente corto. En este periodo se libera bruscamente calor, el cual se puede aprovechar para el horno o caldera. Puede ser completa o incompleta dependiendo de la cantidad de oxidante presente, donde mientras más completa sea la reacción mayor será el calor producido y aprovechado, reduciendo la contaminación al ambiente presente en los productos de la reacción incompleta. En toda reacción de oxidación es necesario la presencia de un oxidante, el cual según el libro Termodinámica (Cengel & Boles, 2012), el oxidante por excelencia es el aire puesto que es abundante y es gratis. Este está compuesto volumétrica o molarmente por 78.1% de nitrógeno molecular, 20.9% de oxígeno molecular, 0.9% de Argón y cantidades pequeñas de dióxido de carbono, helio, neón e hidrógeno como se puede observar en la figura 21. Pero para facilitar los cálculos se considera 79% de N_2 y 21% de O_2 pudiendo obtener la siguiente igualdad en la ecuación (2.1).

El nitrógeno presente en el aire se comporta como gas inerte durante la combustión, pero estar a altas temperaturas absorbe gran cantidad de la energía química liberada (calor).

$$1 \, kmol \, O_2 + 3.76 \, kmol \, N_2 = 4.76 \, kmol \, aire \tag{2.1}$$

Figura 21. Composición del aire atmosférico. Fuente: Elaboración propia.

Al igual que el anterior, el vapor de agua presente en la humedad del aire se comporta como gas inerte, pero se debe tener cuidado que cuando se enfría por debajo de la temperatura de rocío se forman gotas de agua, que al mezclarse con el dióxido de azufre producto de la combustión, genera ácido sulfúrico el cual es muy corrosivo para las superficies metálicas del generador de vapor.

En cuanto a los combustibles tienen uno o más de los siguientes elementos: carbono, hidrógeno, oxígeno, nitrógeno, azufre y algunas materias inertes como ceniza. Tres de los mencionados tienen la posibilidad de reaccionar con el oxígeno y producir calor. Las reacciones de oxidación en estado de referencia estándar son las siguientes:

Combustión del carbono:

$$C_{(s)} + O_{2(g)} \to CO_{2(g)} + calor \left(32766.9 \, \frac{kJ}{kg \, C}\right)$$
 (2.2)

Combustión ineficiente del carbono:

$$C_{(s)} + \frac{1}{2}O_{2(g)} \to CO_{(g)} + calor\left(9203.16 \frac{kJ}{kg C}\right)$$
 (2.3)

Combustión del hidrógeno:

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(g)} + calor \left(120917.5 \frac{kJ}{kg H_2}\right)$$
(2.4)

Combustión del azufre:

$$S_{(s)} + O_{2(g)} \to SO_{2(g)} + calor \left(9276.25 \frac{kJ}{kg S}\right)$$
 (2.5)

Lo pesos atómicos de los anteriores elementos se pueden apreciar en la tabla 1.

Símbolo	Peso atómico	Peso molecular [kg/kmol]
C	12	12
H ₂	1	2
02	16	32
S	32	32
<i>N</i> ₂	14	28
	Símbolo C H_2 O_2 S N_2 C	Símbolo Peso atómico C 12 H_2 1 O_2 16 S 32 N_2 14

Tabla 1. Pesos atómicos y moleculares de elementos presentes en la combustión

Fuente: Elaboración Propia

2.1.1.2. Combustible

Combustible es cualquier elemento que al reaccionar con el oxígeno libera toda su energía interna bruscamente, dejando como residuo calor y algún otro compuesto químico, como por ejemplo el dióxido de carbono.

Existen tres tipos de combustibles según su estado de la materia: sólidos, líquidos y gaseosos.

2.1.1.3. Tipos de combustión

Según el libro Termodinámica (Cengel & Boles, 2012) se tiene cuatro tipos de combustión:

a) Combustión completa:

Oxidación total de los reactivos, los cuales son carbono e hidrógeno, produciendo únicamente dióxido de carbono y vapor de agua con una máxima liberación de energía. b) Combustión incompleta:

El oxígeno presente no es suficiente para oxidar a los reactivos produciendo monóxido de carbono, sulfuros y hollín. No se libera tanta energía térmica como en las completas, además las pérdidas de la combustión son directamente proporcionales a la falta de oxígeno.

c) Combustión teórica o estequiométrica:

Es la combustión en la cual se utilizan cantidades exactamente requeridas de combustible y oxígeno quemándose de forma completa y sin exceso.

d) Combustión completa con exceso de aire:

En este tipo se inyecta una cantidad de aire mayor a la requerida para evitar la formación de monóxido de carbono, pero como consecuencia a mayor cantidad de aire mayor es la disminución de la temperatura máxima de la combustión.

Existe una zona óptima de exceso de aire donde la eficiencia de la combustión es la máxima posible y se evita la formación de monóxido de carbono (ver figura 22).

2.1.1.4. Eficiencia de combustión

Es la medida de la efectividad con que el calor del combustible se convierta en calor utilizable. Los mejores indicadores de eficiencia son el exceso de aire y la producción de monóxido de carbono.

2.1.2. Ecuación de conservación de masa y energía en generadores de vapor

El generador de vapor es un sistema abierto o volumen de control, donde se trabaja con flujos másicos (\dot{m}) y de energía (\dot{E}) que atraviesan sus fronteras (ecuación 2.6). Además, analizándolo como sistema estacionario, no se tomará en cuenta los cambios en el tiempo en una ubicación específica (ecuación 2.7).

$$\dot{m}_{entrada} = \dot{m}_{salida} \ [kg/h] \tag{2.6}$$

$$\dot{E}_{entrada} = \dot{E}_{salida} \quad [kg/h] \tag{2.7}$$

En los generadores de vapor, la principal fuente de calor viene dada por la combustión, por lo que se clasifica como sistema reactivo, en el cual contamos con reactivos y productos que son las entradas y salidas del flujo másico respectivamente.

Figura 22. Concentración de gases por volumen y eficiencia de combustión Fuente: (TSI Inc., 2004)

Para que la energía química aparezca explícitamente se debe calcular las entalpías por unidad de mol de los componentes, esta debe ser relativa al estado de referencia estándar.

$$Entalpia = \bar{h}^{\circ}_{f} + \left(\bar{h}_{T} - \bar{h}^{\circ}_{298}\right) [kJ/kmol]$$
(2.8)

La entalpía molar de formación del compuesto (\bar{h}_{f}°) se considera como la variación entalpía cuando se forma un mol de un compuesto, en estado estándar, a partir de sus elementos en la reacción termoquímica (Pons Muzzo, 1975), el término en paréntesis vendría ser la entalpía sensible relativa al estado de referencia estándar, donde \bar{h}_{T} sería la entalpía sensible molar en el estado especificado en la entrada o salida del volumen de control y \bar{h}_{298}° sería la entalpía sensible molar en el estado de referencia estándar de 298 K y a 1 atm (Cengel & Boles, 2012). Vale recalcar que estos términos se encuentran en kJ/kmol, además de que un proceso exotérmico resulta en una \bar{h}_{f}° negativa y un proceso endotérmico una \bar{h}_{f}° positiva.

De esta manera, en un sistema en que las variaciones de energía cinética y potencial por unidad de tiempo son insignificantes, se divide las entalpías de la ecuación 2.8 entre sus masas molares, además considerando que el poder calorífico inferior (*PCI*) del combustible se halla con la ecuación (2.9) en función a los flujos másicos y entalpías de formación de reactivos y productos (\dot{m}_r , $h^{\circ}_{f,r}$, \dot{m}_p , $h^{\circ}_{f,p}$) y el flujo másico de combustible \dot{m}_c , el cual es afectado por la eficiencia de la combustión (η_{comb}) y que los generadores de vapor no consumen ni producen trabajo mecánico; se puede concluir que la ecuación 2.7 para un generador de vapor se puede escribir como la ecuación 2.10, asumiendo las pérdidas energéticas como \dot{Q}_{sal} .

$$PCI = \frac{\left|\sum \dot{m}_r h^\circ_{f,r} - \sum \dot{m}_p h^\circ_{f,p}\right|}{\dot{m}_c} \left[\frac{kJ}{kg}\right]$$
(2.9)

$$\eta_{comb} PCI\dot{m}_c + \sum \dot{m}_r (h_T - h^{\circ}_{298})_r = \dot{Q}_{sal} + \sum \dot{m}_p (h_T - h^{\circ}_{298})_p \left[\frac{kJ}{h}\right]$$
(2.10)

2.1.3. Temperatura adiabática de llama

Con la ecuación 2.10 se puede concluir que mientras más pequeño sea el rechazo de calor (\dot{Q}_{sal}) mayor resulta la energía de los gases de combustión de salida. En el caso que no haya pérdidas $(\dot{Q}_{sal} = 0)$ se logra una temperatura de llama adiabática (ver figura 23). Con la anterior suposición se obtiene la ecuación 2.11:

$$\eta_{comb} PCI\dot{m}_c + \sum \dot{m}_r (h_T - h^{\circ}_{298})_r = \sum \dot{m}_p (h_{ad} - h^{\circ}_{298})_p \left[\frac{kJ}{h}\right]$$
(2.11)

Donde h_{ad} representa la entalpía sensible de los productos de combustión cuya temperatura es la llama adiabática. Se explicará más adelante como calcular dicha temperatura.

Figura 23. Cámara de combustión adiabática Fuente: Termodinámica (Cengel & Boles, 2012)

Esta temperatura, aunque no existe en la realidad porque las temperaturas que se obtienen son mucho menores; es muy importante, ya que marca el límite teórico de lo que soporta el material seleccionado. El valor de esta temperatura depende de la temperatura del aire, humedad del aire, grado con que se completa la reacción y cantidad de aire utilizado. Por lo tanto, para obtener una temperatura de llama adiabática máxima es necesario una combustión completa utilizando la cantidad teórica de aire.

En la figura 24 se puede ver la variación de la temperatura adiabática (en K) según el dosado, que representa la relación del flujo másico de combustible y flujo másico del aire.

Figura 24. Variación de la temperatura adiabática según el dosado Fuente: (Fygueroa Salgado, Serrano Rico, & Molina Mojica, 2012)

2.2. Fundamentos de transferencia de calor

2.2.1. Conceptos generales

2.2.1.1. Mecanismos y leyes de transferencia

a) Conducción

Es la transferencia de energía cinética de una molécula a una molécula adyacente. Se cree que es debido al movimiento de electrones libres que transportan energía cuando existe diferencia de temperatura. Es la única forma de transferencia en sólidos y es aplicable en gases y líquidos con limitaciones. La conductividad térmica depende del material de trabajo y varía en gran medida de material a material.

La ley de conducción en una dirección va determinada por la ley de Fourier y para un estado estacionario con calor constante se representa mediante la ecuación (2.12), donde \dot{Q} es igual a la potencia térmica transmitida de una superficie caliente a una fría en Watts, k es la conductividad térmica del material [W/m K], S el área en m^2 y dt/dx es el gradiente de temperatura [K/m], donde el signo negativo garantiza que la transferencia de calor en una dirección positiva sea una cantidad positiva.

$$\dot{Q} = -kS\frac{dt}{dx} \left[W\right] \tag{2.12}$$

Si la pared es plana, dado que S es constante, se integra la ecuación anterior obteniendo la ecuación (2.13).

$$\dot{Q} = \frac{k}{x_p} S(\Delta t) \ [W] \tag{2.13}$$

Donde Δt es la variación de temperatura entre el lado caliente y el frío en grados Celsius o Kelvin, y x_p es el espesor de la pared en metros. Si se incluye el término de resistencia térmica de la pared en K/W tenemos que:

$$R = \frac{x_p}{kS} \quad [K/W] \tag{2.14}$$

Teniendo este término, es más fácil calcular la tasa de transferencia de calor en capas de diferentes materiales con la siguiente expresión:

$$\dot{Q} = \frac{\Delta t_{total}}{\sum R} \quad [W] \tag{2.15}$$

b) Convección

Esta transferencia se debe al movimiento del fluido, donde el fluido frío adyacente a superficies calientes recibe calor que luego transfiere al resto de fluido frío mezclándose con

él. Este movimiento puede ser natural o forzado, donde en la convección natural, el movimiento se debe exclusivamente a la no uniformidad de la temperatura del fluido.

En este caso, la ley de transferencia de calor (\dot{Q}) de una pared a un fluido o viceversa remonta a Newton con la ecuación (2.16).

$$\dot{Q} = \pm \alpha S(t_p - t) \ [W] \tag{2.16}$$

Donde t_p es la temperatura de la pared y t es la temperatura del fluido, S la superficie y α el coeficiente de transferencia de calor por convección del fluido, que depende de diversos valores físicos de este en $W/m^2 K$. Además, el signo positivo es para diferenciar que el calor va de la pared al fluido y el negativo en sentido opuesto.

Si se toma en cuenta la resistencia térmica por convección (R) viene dada por la ecuación (2.17) en K/W.

$$R = \frac{1}{\alpha S} \left[K/W \right] \tag{2.17}$$

Y de igual forma que la conducción, si se tiene un sistema de capas; por ejemplo, transmitir calor de un fluido a otro por medio de una pared, se suman todas las resistencias para calcular la global.

c) Radiación

En este mecanismo las superficies que intercambian calor no tienen que estar en contacto unas con otras, pueden estar separadas por un vacío. Se aplica a situaciones afines a ondas electromagnéticas.

Un cuerpo emite energía por radiación en todas direcciones. Si esta choca en un cuerpo, parte de esta se refleja y la restante es absorbida por dicho cuerpo transformándose en calor. Todos los cuerpos irradian energía, donde dos cuerpos frente a frente, el que irradie menos calor es el que se calentará más, porque absorbe más energía de la que refleja. Un cuerpo negro es aquel que alcanza su calor máximo que emite a una determinada temperatura, es decir, su emisividad es igual a 1. Un cuerpo gris (como la mayoría de los casos) su emisividad es menor a 1.

La ley de transferencia de calor de dos superficies separadas por un espacio intermedio viene dada por la ecuación (2.18) de Stefan-Boltzmann.

$$\dot{Q} = \sigma S_1 F_{12} (t_1^4 - t_2^4) \quad [W]$$
(2.18)

Donde σ es la constante de Stefan-Boltzmann igual a 5.6703x10-8 $W/m^2 K^4$, S_1 es la superficie radiante en m², t_1 y t_2 las temperaturas absolutas de las superficies radiadas y radiantes en K y F_{12} es una función de la geometría y la emisividad de ambas superficies.

2.2.1.2. Transferencia de calor en un generador de vapor

En el generador de vapor se da una mezcla de los mecanismos de transferencia de calor. Primero, en el hogar al quemarse el bagazo, el calor se transmite por radiación a las paredes de agua, y el restante es transferido de los gases de combustión hacia el agua y/o vapor por medio de los intercambiadores; en este caso la convección es el mecanismo que obtiene el mayor porcentaje, aunque también existe algo de conducción y radiación.

Para explicarlo de mejor manera, en la parte externa del tubo del intercambiador, una delgada película de gas se adhiere a él, mientras que en la interna se adhiere una película de agua. El calor es trasmitido desde la película de gas pasando por el metal del tubo hasta la película de agua por conducción, mientras que en el resto del flujo se produce convección.

Del mismo modo se produce en el tubo del sobrecalentador, aunque en vez de agua ahora es vapor.

2.2.1.3. Coeficiente de transferencia de calor global

Se tiene t' y t'', las cuales son las temperaturas de un fluido de calentamiento y calentado respectivamente, separados por una pared. El flujo de calor transferido (\dot{Q}) en Watts, del fluido más caliente al más frío, es igual a:

$$\dot{Q} = US(t' - t'') \ [W]$$
 (2.19)

Donde S es la superficie de transferencia de calor en m^2 y U el coeficiente de transferencia de calor en $W/m^2 K$.

El coeficiente global U toma en cuenta tanto los mecanismos de transferencia del fluido caliente a la pared, a través de la pared y de esta hacia el fluido a calentar.

Para calcular el valor de U se utiliza el desarrollo propuesto en libro "Steam Generators" (Annaratone, 2008), considerando que el producto de U y S es el recíproco a la resistencia térmica global y que existe convección del fluido caliente a la pared al igual que de la pared al fluido por calentar ($\alpha' y \alpha''$ respectivamente) en $W/m^2 \, {}^\circ C$, además de conducción a través de la pared representado por el coeficiente de conducción térmica (k) en $W/m \, {}^\circ C$ y el espesor de la pared (x_p) en m tenemos:

$$U = \frac{1}{\frac{1}{\alpha'} + \frac{x_p}{k} + \frac{1}{\alpha''}} \left[\frac{W}{m^2 \circ C}\right]$$
(2.20)

Ahora, si se considera una pared cilíndrica de longitud unitaria, su superficie S vendría representada por la ecuación (2.21).

$$S = 2\pi r \ [m^2] \tag{2.21}$$

Mediante la analogía de la expresión (2.13), integrando y despejando el flujo de calor se obtiene:

$$\int_{t_2}^{t_1} dt = \int_{r_i}^{r_o} \frac{\dot{Q}}{2\pi r} \frac{dr}{k}$$
(2.22)

$$\Delta t_2 = t_1 - t_2 = \frac{\dot{Q}}{2\pi k} \ln\left(\frac{r_o}{r_i}\right) \ [^\circ C] \tag{2.23}$$

$$\dot{Q} = \frac{2\pi k}{\ln\left(\frac{r_o}{r_i}\right)} (t_1 - t_2) \ [W]$$
(2.24)

Donde r_o y r_i son los radios externo e interno respectivamente. Si tomamos a los diámetros externo e interno $(d_o y d_i)$, se pueden obtener las ecuaciones de transmisión por convección en ambos fluidos; que sumándolas obtenemos la variación de temperatura total.

$$\Delta t_1 = t' - t_1 = \frac{\dot{Q}}{\pi d_o} \frac{1}{\alpha'} \ [^{\circ}C]$$
(2.25)

$$\Delta t_3 = t_2 - t'' = \frac{\dot{Q}}{\pi d_i} \frac{1}{\alpha''} \quad [^{\circ}C]$$
(2.26)

$$\Delta t = \Delta t_1 + \Delta t_2 + \Delta t_3 = \frac{\dot{Q}}{\pi d_o} \left(\frac{1}{\alpha'} + \frac{d_o}{2k} ln \left(\frac{d_o}{d_i} \right) + \frac{1}{\alpha''} \frac{d_o}{d_i} \right) \quad [^\circ C]$$
(2.27)

Siguiendo los mismos pasos anteriores, con la ecuación (2.20) se puede obtener un coeficiente global exterior e interior, el primero cuando la transferencia de calor va desde el exterior al interior y el otro cuando va en sentido contrario. Luego despejando se puede obtener un coeficiente global exterior U_o o coeficiente global interior U_i , según el área (exterior o interior) a la cual se desea referir la transmisión de calor.

$$U_{o} = \frac{1}{\frac{1}{\alpha'} + \frac{d_{o}}{2k} ln\left(\frac{d_{o}}{d_{i}}\right) + \frac{1}{\alpha''} \frac{d_{o}}{d_{i}}} \left[\frac{W}{m^{2} \circ C}\right]$$
(2.28)
$$U_{i} = \frac{1}{\frac{1}{\alpha''} + \frac{d_{i}}{2k} ln\left(\frac{d_{o}}{d_{i}}\right) + \frac{1}{\alpha'} \frac{d_{i}}{d_{o}}} \left[\frac{W}{m^{2} \circ C}\right]$$
(2.29)

Así como se mencionó la importancia de calcular la temperatura adiabática para el diseño de nuestro generador, es necesario calcular la temperatura que soportarán las paredes de los tubos por la misma razón anterior. Por lo que se puede calcular la temperatura de la pared en contacto con el fluido caliente (t'_p) y la temperatura de pared en contacto con el fluido que se va a calentar (t''_p) .

Respecto al diámetro externo tenemos que:

$$t'_{p} = t' - \frac{U_{o}}{\alpha'}(t' - t'') \ [^{\circ}C]$$
(2.30)

$$t''_{p} = t'' + \frac{U_{o}}{\alpha''} \frac{d_{o}}{d_{i}} (t' - t'') \ [^{\circ}C]$$
(2.31)

Respecto al diámetro interno tenemos que:

$$t'_{p} = t' - \frac{U_{i}}{\alpha'}(t' - t'') \quad [^{\circ}C]$$
(2.32)

$$t''_{p} = t'' + \frac{U_{i}}{\alpha''} \frac{d_{i}}{d_{o}} (t' - t'') \quad [^{\circ}C]$$
(2.33)

2.2.2. Características físicas de los fluidos

La convección como principal mecanismo de transferencia de calor que tiene lugar en los generadores de vapor tiene como característica principal al coeficiente de transferencia de calor α , este a su vez depende de diversos factores como el calor especifico a presión constante (c_p), conductividad térmica (k) y viscosidad dinámica (μ).

Otros valores importantes en el cálculo de transferencia de calor serían la densidad (ρ) con la que se hallaría el número adimensional de Reynolds (*Re*). Por último, el número de Prandtl también juega un papel fundamental.

Se mostrarán fórmulas para hallar los anteriores valores para el agua, aire y gases de combustión en función de la temperatura. Estos valores hallados por Annaratone (2008) no exceden un error del $\pm 2\%$ en los rangos que se mencionarán.

2.2.2.1. Agua líquida

a) Densidad

La temperatura se utiliza en °C por lo que la densidad resulta en kg/m^3 . La fórmula es válida para temperaturas entre [10 - 300]°C y presiones entre [5 - 100] bares.

Pr

$$\rho = 1006.68 - 20.07 \frac{t}{100} - 25.15 \left(\frac{t}{100}\right)^2 \left[\frac{kg}{m^3}\right]$$
(2.34)

b) Calor específico

La temperatura se utiliza en °C por lo que el calor específico resulta en J/kg K. La fórmula es válida para temperaturas entre [20 - 250]°C y presiones entre [5 - 100] bares.

$$c = 4219.58 - 187.25 \frac{t}{100} + 172.17 \left(\frac{t}{100}\right)^2 \left[\frac{J}{kg K}\right]$$
(2.35)

c) Conductividad térmica

La temperatura se utiliza en °C por lo que la conductividad térmica resulta en W/m K. La fórmula es válida para temperaturas entre [10 - 300]°C y presiones entre [5 - 100] bares.

$$k = 0.5755 - 0.1638 \frac{t}{100} + 0.05767 \left(\frac{t}{100}\right)^2 \left[\frac{W}{m K}\right]$$
(2.36)

d) Viscosidad dinámica

La viscosidad dinámica del agua líquida es independiente a la presión, pero varía en gran medida en función de la temperatura por lo que es casi imposible establecer una ecuación en un margen razonable. Se muestran algunos valores en la Tabla 2 extraída de la Tabla A-9 del libro Transferencia de calor y masa (Cengel & Ghajar, 2011), la tabla completa está en el Anexo 4.

t (°C)	μ	t (°C) μ		t (°C)	μ	
10	1300	110	253	210	128	
20	1000	120	231	220	123	
30	7 97	130	212	230	118	
40	652	140	196	240	113	
50	545	150	182	250	109	
60	463	160	170	260	104	
70	401	170	160	270	102	
80	351	180	150	280	98.2	
90	312 🧹	190	142	290	94.9	
100	280	200	135	300	91.7	

Tabla 2. Valores de viscosidad dinámica (μ) en 10⁻⁶ kg/ms del agua líquida

Fuente: Transferencia de calor y masa (Cengel & Ghajar, 2011)

2.2.2.2. Aire

a) Densidad

Se halla aplicando la ley de los gases ideales, donde se utiliza la presión absoluta (P [kPa]) y la temperatura absoluta (T [K]) igual a la temperatura (t) en °C aumentada en 273.15. Por lo que para condiciones normales su densidad es igual a 1.293 kg/m^3 .

$$\rho = 1.293 \frac{P}{101.325} \frac{273.15}{T} = \frac{3.486P}{273.15+t} \left[\frac{kg}{m^3}\right]$$
(2.37)

b) Calor específico a presión constante

La temperatura se utiliza en °C por lo que el calor específico a presión constante resulta en J/kg K. La fórmula es válida para temperaturas entre [0 - 300]°C.

$$c_p = 1003.79 + 75.53 \frac{t}{1000} + 216 \left(\frac{t}{1000}\right)^2 \left[\frac{J}{kg K}\right]$$
(2.38)

c) Conductividad térmica

La temperatura se utiliza en °C por lo que la conductividad térmica resulta en W/m K. La fórmula es válida para temperaturas entre [0 - 300]°C.

$$k = 0.02326 - 0.06588 \frac{t}{1000} \left[\frac{W}{m\,K}\right] \tag{2.39}$$

d) Viscosidad dinámica

La temperatura se utiliza en °C por lo que la viscosidad dinámica resulta en kg/m s. La fórmula es válida para temperaturas entre [0 - 300]°C.

$$\mu = \left[17.069 - 47.469 \frac{t}{1000} + 18.708 \left(\frac{t}{1000}\right)^2 \right] \times 10^{-6} \left[\frac{kg}{ms}\right]$$
(2.40)

2.2.2.3. Gases de combustión

a) Densidad

La densidad de los gases de combustión en condiciones normales (ρ_0) depende de las cantidades de masa y volumen de gas por kilogramo de combustible ($G_m \ y \ G_v$ respectivamente). Para otro tipo de condiciones, al igual que el aire, se aplica la ley de gases ideales.

$$\rho_0 = \frac{G_m}{G_\nu} \left[\frac{kg}{m^3} \right] \tag{2.41}$$

b) Calor específico a presión constante

La ecuación es obtenida por Annaratone (2008) a partir del porcentaje en masa de humedad del gas de combustión (*m*) y la temperatura de este (*t*) en grados Celsius, donde resulta el calor específico a presión constante en J/kg K. El rango de temperatura esta entre $[50 - 1200]^{\circ}C$.

$$c_p = 971.7 + 10.49m + (352.53 - 4.97m)\frac{t}{1000} - (76.59 - 6.07m)\left(\frac{t}{1000}\right)^2 \left[\frac{J}{kg\,K}\right]$$
(2.42)

c) Conductividad térmica

Del mismo modo que el calor específico se relacionan los dos términos antes mencionados resultando la conductividad térmica en W/m K. El rango de temperatura esta entre $[0 - 300]^{\circ}C$.

$$k = \frac{21.924 - 0.0337m + (68.467 + 0.0966m)\frac{t}{1000} - (12.991 - 0.6229m)\left(\frac{t}{1000}\right)^2}{1000} \left[\frac{W}{m K}\right]$$
(2.43)
d) Viscosidad dinámica

Al igual que los otros dos casos se utiliza la temperatura (en °C) y el porcentaje de humedad. La viscosidad resulta en kg/m s. El rango de temperatura esta entre [50 - 1200]°C.

$$\mu = \frac{16.861 - 0.1106m + (43.449 + 0.111m)\frac{t}{1000} - (11.19 - 0.0985m)\left(\frac{t}{1000}\right)^2}{10^6} \left[\frac{kg}{ms}\right]$$
(2.44)

6.5

2.2.3. Convección en generadores de vapor

Como se mencionó, en la caldera acuotubular la convección es aquel mecanismo que preside la transferencia de calor; por tal motivo es de gran importancia hallar el valor de los coeficientes convectivos α .

La principal formula a utilizar es la planteada por Hansen y Schack, mencionada por Annaratone (2008) y Cengel & Ghajar (2011).

$$Nu = CRe^m Pr^n K \tag{2.45}$$

En la formula anterior se pueden notar dos números adimensionales, el numero Reynolds (Re) y el número de Prandtl (Pr). El primer número adimensional es característico del movimiento del fluido el segundo es característico en la velocidad de difusión del calor. Además de C, m y n son constantes y K como factor adimensional característico del fluido.

$$Re = \frac{w\rho d}{\mu} = \frac{Gd}{\mu} \tag{2.46}$$

$$Pr = \frac{c_p \mu}{k} \tag{2.47}$$

Donde w es la velocidad del fluido en m/s, G la velocidad másica del fluido en $kg/m^2 s$, d el diámetro característico del fluido en m.

Además, también se sabe que el número de Nusselt (Nu) relaciona la transferencia de calor por convección entre la transferencia de calor por conducción obteniendo:

$$Nu = \frac{\alpha \times d}{k} \tag{2.48}$$

Donde α es el coeficiente de transferencia de calor por convección y k es la conductividad térmica.

2.2.3.1. Convección forzada en el interior de los tubos

Según Annaratone (2008) es necesario poder discernir si el fluido que circula por dentro del tubo es turbulento o laminar. Para esto solo basta con conocer el número de Reynolds del fluido en cuestión y si este es igual o menor a 2000 se da por entendido que es laminar. Dado que este tipo de flujo se da en situaciones raras e inverosímiles, generalmente se da flujo turbulento.

Para poder comprobar el flujo turbulento ($Re \ge 3000$) basta con que se cumpla la siguiente condición, resultado de despejar la ecuación (2.49).

$$G \ge \frac{3000\mu}{d} \left[\frac{kg}{m^2 s}\right] \tag{2.49}$$

Al ser flujo turbulento habrá una capa límite de fluido pegado al tubo la cual será flujo laminar, seguido por un flujo de transición y, por último, existe una región central con vórtices.

Como se ha explicado, en la película delgada de fluido o capa límite se da transferencia de calor por conducción, por lo que el valor de su conductividad térmica es esencial.

La temperatura entre la capa límite y la región central va variando, por esto se precisa la temperatura de la región central como la temperatura de la masa (t_b) . La temperatura media de la capa límite se calcula como la media aritmética de la temperatura de la pared y de la masa a la que se define como temperatura de película (t_f) .

a) Agua líquida

Para el agua líquida está la ecuación de Dittus y Boelter mencionada por Cengel & Ghajar (2011).

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$
(2.50)

Despejando la ecuación (2.50) obtenemos:

$$\alpha = 0.023 \frac{c_{p_b}^{0.4} k_b^{0.6} G^{0.8}}{\mu_b^{0.4} d_i^{0.2}} \left[\frac{W}{m^2 \circ C} \right]$$
(2.51)

El subíndice "b", quiere denotar que la temperatura de referencia es la mayor, es decir, a la temperatura de la masa del fluido. Además, c_{p_b} , $k_b y \mu_b$ se calculan de la misma forma que se explicó anteriormente. De este modo Annaratone (2008) plantea la siguiente igualdad:

$$K_w = 5.8 + 9.19 \frac{t_b}{100} - 1.395 \left(\frac{t_b}{100}\right)^2 \approx 0.023 \frac{c_{p_b}^{0.4} k_b^{0.6}}{\mu_b^{0.4}}$$
(2.52)

Donde t_b esta en °C, por lo que la ecuación (2.51) se reduce a:

$$\alpha = K_{w} \frac{G^{0.8}}{d_{i}^{0.2}} \left[\frac{W}{m^{2} \circ C} \right]$$
(2.53)

Donde d_i se utiliza en *m* por lo que α resulta en $W/m^2 K$ y K_w viene definido por la ecuación (2.52).

b) Vapor sobrecalentado

Utilizando el mismo procedimiento anterior, según Annaratone (2008):

$$\alpha = K_s \frac{G^{0.75}}{d_i^{0.25}} \left[\frac{W}{m^2 \circ C} \right]$$
(2.54)

Donde α resulta en $W/m^2 K$ y K_s viene definido por la siguiente ecuación:

$$K_s = 5.069 - 0.0529p + (4.467 + 0.169p) \frac{t_b}{1000} - (1.268 + 0.143p) \left(\frac{t_b}{1000}\right)^2$$
(2.55)

Esta ecuación es válida para presiones de vapor entre [10 - 100]bares y temperaturas de masa entre $[180 - 550]^{\circ}C$.

Hay que tener en cuenta que un valor muy bajo de α causaría que la temperatura del tubo aumente demasiado, lo que traería consigo mucho deterioro para el mismo. Otro punto muy importante que presiones bajas de vapor sobrecalentado lo hace poco denso que por resultante da velocidades muy altas (superiores a 25 m/s) que no son aptas para el diseño.

c) Gases de combustión

Annaratone (2008) plantea la ecuación 2.56 para α que es el coeficiente de transferencia de calor por convección.

$$\alpha = K_g \frac{G^{0.8}}{d_i^{0.2}} \left[\frac{W}{m^2 \circ C} \right]$$
(2.56)

Utilizando G en kg/m^2s y d_i en m, α resulta en W/m^2K . El factor K_g se calcula por la siguiente ecuación:

$$K_g = 3 + 0.18m + (2.161 + 0.0117m) \frac{t_f}{1000} - (0.658 - 0.0257m) \left(\frac{t_f}{1000}\right)^2$$
(2.57)

En la cual "m" representa el porcentaje de la masa de la humedad del gas de combustión y t_f es la temperatura de película del gas de combustión en rango de $[50 - 1200]^{\circ}C$.

d) Líquidos en ebullición

Existen dos tipos de ebullición, la ebullición nucleada sucede cuando el vapor se forma habitualmente a través de burbujas que emergen y se despegan de la superficie y la ebullición de película se produce cuando de la coalescencia¹ de las burbujas se produce una capa de vapor que se rasga constantemente.

Diversos autores afirman que se puede tomar un valor constante del coeficiente de transferencia de calor de ebullición del agua cuando se da ebullición nucleada en el interior de los tubos.

$$\alpha = 12000 \left[\frac{W}{m^2 K}\right]$$
(2.58)

2.2.3.2. Convección forzada en el exterior de los tubos

Las calderas se identifican por tener un banco de tubos que son cruzados por gases de combustión. Esta velocidad es perpendicular al eje de los tubos puesto que, si fuera en paralelo, lo cual representaría una ventaja estructural, en cuanto a términos energéticos resultaría en una disminución de la transferencia de calor.

En cuanto al gas de combustión, se mueve a través de los espacios entre los tubos. Aquí radica la importancia de calcular el área de paso de sección "A" y el perímetro afectado por el paso "P". En la figura 25 se muestra el valor de estos. Con estos dos datos obtenemos el valor del diámetro hidráulico (d_h) con la ecuación (2.59) mencionada por Annaratone (2008) dato con el cual se calculará el valor del coeficiente de calor (α) más adelante.

$$d_h = \frac{4A}{P} \quad [m] \tag{2.59}$$

¹ Propiedad de las sustancias para unirse o fundirse.

Figura 25. Área de paso de sección (A) y perímetro afectado por el paso (P) Fuente: Annaratone (2008)

Es importante la disposición en línea o escalonada al igual que la relación del espacio transversal y longitudinal, y el diámetro de los tubos para el cálculo del valor de α .

The Babcock & Wilcox Company (1992) sugiere la siguiente expresión para el cálculo del coeficiente de transferencia de calor:

$$\alpha = 0.287 f_d f_a R e^{0.61} P r^{\frac{1}{3}} \frac{k}{d_o} \left[\frac{W}{m^2 \circ C} \right]$$
(2.60)

Donde f_a es el factor de disposición que depende del número de Reynolds, la relación entre el espaciado transversal (s_t) , el diámetro exterior de los tubos (d_o) , la relación de espaciado longitudinal (s_l) , el mismo diámetro y, por último, el tipo de arreglo (en línea o escalonado). Los valores de f_a se pueden calcular con las figuras 26, 27 y 28.

El factor f_d es el factor de profundidad que se requiere como muestra de la influencia del número de filas (cuando el número de filas es menor a 10). Sus valores están mostrados en la tabla 3.

Tabla 3. Valores del factor de profundidad (f_d) según el número de filasNúmero12245679

	de filas	1	2	3	4	5	6	7	8	9
	f_d	0.7	0.82	0.87	0.91	0.93	0.95	0.97	0.98	0.99
$\mathbf{E}_{\mathbf{r}}$										

Fuente: Annaratone (Generatori di Vapore, 1985)

De la misma forma que para la convección interna, se puede hallar un factor K que represente todas las características físicas del fluido, por lo tanto, depende del tipo del fluido y de su temperatura de película. El valor de K para cada fluido se hallará más adelante, pero se puede escribir la ecuación de la siguiente manera, donde el subíndice "f" indica del fluido.

$$\alpha = K f_d f_a \frac{G^{0.61}}{d_o^{0.39}} \left[\frac{W}{m^2 \,^{\circ}C} \right]$$
(2.61)

Donde:

$$K = 0.287 \frac{\left(c_{p_{f}}k_{f}^{2}\right)^{\frac{1}{3}}}{\mu_{f}^{0.2767}}$$

$$(2.62)$$

Figura 26. Dimensiones características del arreglo de tubos transversales al flujo en línea (arriba) y en forma escalonada (abajo) Fuente: Annaratone (2008)

Haciendo la suposición de tener dos bancos de tubos, uno con disposición en línea y otro escalonado, los dos con tubos del mismo diámetro, espaciamiento longitudinal y transversal que son atravesados por el mismo fluido. Se observa, con la información que brindan las figuras 27 y 28, que el factor f_a es mayor en la disposición escalonada a comparación que la que es en

línea; esto supone que se conseguiría un valor de coeficiente de transferencia de calor mayor en la escalonada. Esto hace pensar que esta disposición es mejor, pero se está dejando de lado otras variables.

Por ejemplo, como se dijo que el valor de f_a es menor para la disposición en línea, lo que se puede traducir como un valor de caída de presión menor a comparación a la escalonada.

Por lo tanto, se puede decir que ambas tienen pros y contras, es decir, con una disposición en línea se ahorraría en costes de ventilador y la energía que consume, pero resultaría en una mayor inversión en cuanto al número de tubos debido al menor valor de coeficiente de transferencia de calor. Por otro lado, la disposición escalonada es todo lo contrario, ahorrando en el número de tubos, pero requiere de una mayor capacidad de ventilación.

Figura 27. Factor de disposición f_a para arreglos de tubos en línea

Fuente: Annaratone (2008)

Figura 28. Factor de disposición f_a para arreglos de tubos escalonados Fuente: Annaratone (2008)

Otro aspecto importante es el ancho de espacio disponible para el banco de tubos (que se establece) el cual, si se considera que se puede tener un paso transversal más pequeño en la disposición en línea, el área de sección transversal se reduce aumentando la velocidad permitiendo además aumentar el número de tubos por fila consiguiéndose un banco más compacto.

Se muestran las ecuaciones para hallar los valores de K en función de la temperatura de película para los distintos tipos de fluidos.

a) Aire

$$\alpha = \left[4.884 + 0.545 \frac{t_f}{100} - 0.012 \left(\frac{t_f}{100}\right)^2 \right] f_d f_a \frac{G^{0.61}}{d_o^{0.39}} \left[\frac{W}{m^2 \circ C} \right]$$
(2.63)

El rango de temperaturas para que sea válida la ecuación va dentro de $[0 - 300]^{\circ}C$. En esta ecuación ya ha sido reemplazado el valor de K_a para calcular α .

b) Vapor sobrecalentado

$$K_s = 7.94 + 0.142p - (3.77 + 0.236p)\frac{t_f}{1000} + (18.98 + 0.029p)\left(\frac{t_f}{1000}\right)^2$$
(2.64)

En este caso depende de la presión además de la temperatura. El rango de temperaturas (t_f) para que sea válida la ecuación va dentro de $[180 - 550]^{\circ}C$ y el de presiones (p) va de [10 - 100] bar. Posteriormente α se calcula con la ecuación (2.61).

c) Gases de combustión

$$K_g = 4.752 + 0.0204m + (5.553 + 0.0294m) \frac{t_f}{1000} - (1.614 - 0.0479m) \left(\frac{t_f}{1000}\right)^2$$
(2.65)

Para el caso depende de la humedad de los gases de combustión "m" además de la temperatura. El rango de temperaturas para que sea válida la ecuación va dentro de [50 - 2000]°C. Posteriormente α se calcula con la ecuación (2.61).

2.2.4. Radiación en generadores de vapor

2.2.4.1. Radiación de la llama en cámara de combustión

Ayudándose del concepto antes explicado de la llama adiabática en el apartado 2.1.3, se plantearán las siguientes variables: H'_i (calor liberado durante la combustión en el hogar por kg de combustible en kJ/kg) y *PCI* (poder calorífico inferior del combustible).

Ambas variables se relacionan aplicando la primera ley de la termodinámica en la cámara de combustión. Suponiendo el ingreso del combustible a la cámara de combustión a la temperatura T_c dada en K al igual que la temperatura de entrada del aire precalentado T_{as} .

$$H'_{i} = PCI + (h_{c}(T_{c}) - h_{c}(T_{0})) + A_{m}(h_{a}(T_{as}) - h_{a}(T_{ref})) - q_{p} \left[\frac{kJ}{kg}\right]$$
(2.66)

Donde:

- A_m : Cantidad de aire por kg de combustible. [kg de aire/kg de combustible]
- $h_c(T_c)$: Entalpía del combustible a la temperatura T_c . [kJ/kg]
- $h_c(T_{ref})$: Entalpía del combustible a la temperatura T_{ref} . [kJ/kg]
- $h_a(T_{as})$: Entalpía del aire a la temperatura T_{as} . [kJ/kg]
- $h_a(T_{ref})$: Entalpía del aire a la temperatura T_{ref} . [kJ/kg]
- q_p : Energía que se pierde debido a la combustión incompleta, radiación o ceniza por kg de combustible. [kJ/kg]

De otra forma se puede representar H'_i en función a la temperatura adiabática de llama T_{ad} , la entalpía de los gases de combustión a la temperatura adiabática de llama $h_g(T_{ad})$, la entalpía de los gases de combustión a la temperatura de referencia $h_g(T_{ref})$ y los kg de gases de combustión por kg de combustible G_m .

$$H'_{i} = G_m \left(h_g(T_{ad}) - h_g(T_{ref}) \right) \left[\frac{kJ}{kg} \right]$$
(2.67)

Con las ecuaciones (2.66) y (2.67) $h_g(T_{ad})$ se puede calcular, además si se resuelve el cociente del calor liberado entre los kg de gases de combustión se obtiene el calor introducido en el hogar por kg de gases de combustión que tiene la dimensión de entalpía por lo que se representa como h_g .

$$h_g = h_g(T_{ad}) - h_g(T_{ref}) \left[\frac{kJ}{kg}\right]$$
(2.68)

No se debe olvidar la disociación del vapor del agua y el dióxido de carbono del gas de combustión por encima de los 1500°C, que produce una disminución de temperatura considerable, por lo que las ecuaciones anteriores se volverían incorrectas.

Se hace recuerdo que la temperatura del hogar es algo menor a la temperatura adiabática de llama debido al calor irradiado a las paredes \dot{Q}_r [*kW*], que se puede calcular en función de la entalpía de los gases de combustión a la salida del hogar $h_g(T_{CC2})$ en *kJ/kg*, el flujo másico de combustible \dot{m}_c en *kg/s*, el calor liberado durante la combustión en el hogar por kg de combustible H'_i y la entalpía de los gases de combustión a la temperatura de referencia $h_g(T_{ref})$ en kJ/kg; quedando la ecuación como:

$$\dot{Q}_{r} = \dot{m}_{c} H'_{i} - \dot{m}_{c} G_{m} \left(h_{g}(T_{CC2}) - h_{g}(T_{ref}) \right) [kW]$$
(2.69)

Con la ecuación (2.69) se observa que se puede calcular la temperatura del hogar habiendo hallado la entalpía $h_g(T_{CC2})$, por lo que primero se debe hallar \dot{Q}_r . Para este cálculo se utiliza la ecuación (2.70) que representa la radiación de un cuerpo negro basada en la ley de Stefan Boltzmann. Esta tiene como términos la temperatura absoluta de cuerpo irradiante T_f en grados Kelvin sobre una superficie negra con temperatura T_p también en grados Kelvin, la constante de Stefan Boltzmann σ y el área de la pared irradiante o irradiada S en m^2 . El calor irradiado resulta en W representándose en la ecuación siguiente:

$$\dot{Q}_r = \sigma S \left(T_f^4 - T_p^4 \right) [kW]$$
 (2.70)

Utilizando esta ecuación, se puede calcular el calor irradiado en las paredes del hogar en función a la temperatura absoluta de las paredes del hogar T_p y la emisividad (varía dependiendo el combustible) como:

$$\dot{Q}_r = 5.67 \varepsilon S \left[\left(\frac{T_{CC2}}{100} \right)^4 - \left(\frac{T_p}{100} \right)^4 \right] [kW]$$
(2.71)

De manera empírica se puede decir que la temperatura de las paredes es mayor en 50°C respecto al fluido a calentar que circula por el interior de los tubos.

Juntando las ecuaciones (2.69) y (2.70) se obtiene el siguiente método iterativo para hallar T_{CC2} en la ecuación (2.72):

$$5.67 \frac{\varepsilon S}{\dot{m}_c G_m} \left[\left(\frac{T_{CC2}}{100} \right)^4 - \left(\frac{T_p}{100} \right)^4 \right] = h_g - \left(h_g(T_{CC2}) - h_g(T_{ref}) \right)$$
(2.72)

El valor de ε varía entre [0.70 – 0.75] para combustibles sólidos, 0.70 para combustibles líquidos y 0.65 para combustibles gaseosos. El valor de S es crucial para el cálculo, la cual

representa la superficie concerniente al área de sección transversal del espacio donde se estará el banco. Si los tubos están espaciados, la superficie S es igual a la superficie de la pared proyectada multiplicada por un factor de eficiencia E obtenido de la figura 29.

Figura 23: Factor de cricciona para paredes madra Fuente: Annaratone (2008)

2.2.4.2. Radiación de los gases de combustión hacia los bancos de tubos

El calor irradiado por los gases de combustión por unidad de tiempo y por unidad de superficie q_r es expuesto por Annaratone (2008) como:

$$q_r = q_{CO_2} + q_{H_2O} \left[\frac{W}{m^2}\right]$$
(2.73)

Donde q_{CO_2} y q_{H_2O} representan al flujo de calor por unidad de área irradiado por el dióxido de carbono y vapor de agua respectivamente y están expresados en kW/m^2 . Estos a su vez pueden ser representados como el producto de un coeficiente de transferencia de calor ideal α'_r y la diferencia de las temperaturas de los gases de combustión y la de pared, t' y t'_p respectivamente (en °C).

$$q_r = q_{CO_2} + q_{H_2O} = \alpha'_r (t' - t'_p) \left[\frac{W}{m^2}\right]$$
(2.74)

Obteniendo el valor de α'_r despejando la ecuación (2.74):

$$\alpha'_{r} = \frac{q_{CO_{2}} + q_{H_{2}O}}{t' - t'_{p}} \left[\frac{W}{m^{2} \circ C} \right]$$
(2.75)

El valor de α'_r es práctico porque podemos relacionar la ecuación (2.73) con la ecuación del calor por convección (q_c) igual a:

$$q_c = \alpha'_c (t' - t'_p) \left[\frac{W}{m^2}\right]$$
(2.76)

Donde α'_c , que representa a el coeficiente de transmisión de calor por convección, ha sido calculado anteriormente. Con lo que se puede sumar las ecuaciones (2.74) y (2.76) obteniendo:

$$q = q_r + q_c = (\alpha'_r + \alpha'_c)(t' - t'_p) \left[\frac{W}{m^2}\right]$$
(2.77)

Con la cual se consigue hallar el coeficiente de transmisión de calor total (α') en la ecuación (2.78).

$$\alpha'_r + \alpha'_c = \alpha' \left[\frac{W}{m^2 \circ C}\right]$$
(2.78)

Para proceder con el cálculo de α'_r se utilizará un método que tiene los siguientes rangos de validez:

$$px_r = [0.01 - 0.36] atm \times m \tag{2.79}$$

$$\beta = \frac{p_{H_20}}{p_{C0_2}} = [0.3 - 2] \tag{2.80}$$

 $t_p = [200 - 600]^{\circ}C \tag{2.81}$

$$\Delta t_p = [200 - 1000]^{\circ}C \tag{2.82}$$

$$B = 0.95$$
 (2.83)

Donde p es igual a la suma de presiones parciales del dióxido de carbono y del vapor de agua, Δt_p es igual a la diferencia de temperatura entre los gases de combustión y la pared irradiada y x_r es la longitud de radiación media.

El valor de α'_r se puede calcular con la ecuación (2.84):

$$\alpha'_{r} = K_{r}\bar{\alpha}'_{r} \left[\frac{W}{m^{2} \circ C}\right]$$
(2.84)

Donde $\bar{\alpha}'_r$ se calcula con la ecuación (2.85) expuesta por Annaratone (2008):

$$\bar{\alpha}'_{r} = \frac{8.985}{\Delta t_{p}} \left[\left(\frac{\Delta t_{p} + t_{p}}{100} \right)^{3.2} - \left(\frac{t_{p}}{100} \right)^{3.2} \left(\frac{\Delta t_{p} + t_{p}}{100} \right)^{0.65} \right] \\ + \frac{9.861}{\Delta t_{p}} \left[\left(\frac{\Delta t_{p} + t_{p}}{100} \right)^{2.652} - \left(\frac{t_{p}}{100} \right)^{2.565} \right] \left[\frac{W}{m^{2} \circ C} \right]$$
(2.85)

Y los valores de K_r se obtienen de la tabla 4:

En cuanto a los valores de x_r se pueden extraer de las figuras 30 y 31, donde s_t y s_l son el paso transversal y longitudinal respectivamente, y d_o es el diámetro exterior de los tubos.

Figura 30. Relación x_r/d_o para tubos en línea Fuente: Annaratone (2008)

Figura 31. Relación x_r/d_o para tubos escalonados Fuente: Annaratone (2008)

En el caso que los gases circulen por el interior de los tubos (pirotubular) se tiene que x_r viene representado en la ecuación (2.86):

$$x_r = 0.9d_i \ [m] \tag{2.86}$$

En la cual d_i es igual al diámetro interno de los tubos.

2.2.5. Cálculo de entalpía de los fluidos

La variación de entalpía de un fluido en diferentes temperaturas viene dada por la integración del calor específico a presión constante de dicho fluido desde t_1 a una temperatura t_2 , esta ecuación viene dada por Cengel & Boles (2012).

$$\Delta h = h_2 - h_1 = \int_{t_1}^{t_2} c_p dt \ \left[\frac{kJ}{kg}\right]$$
(2.87)

El cálculo de una entalpía a una temperatura específica se obtiene utilizando un punto de referencia arbitrario:

$$h_1 = \int_{t_{ref}}^{t_1} c_p dt \left[\frac{kJ}{kg}\right]$$
(2.88)

Tabla 4. Factor K_r

px_r (atm \times m)	$\beta = p_{H_2O}/p_{CO_2}$								
	0.3	0.4	0.5	0.7	1.0	1.3	1.6	2.0	
0.005	0.108	0.107	0.106	0.104	0.102	0.099	0.098	0.096	
0.010	0.145	0.145	0.144	0.143	0.141	0.139	0.137	0.135	
0.015	0.175	0.175	0.174	0.174	0.172	0.171	0.169	0.167	
0.020	0.200	0.200	0.200	0.200	0.200	0.198	0.197	0.196	
0.025	0.221	0.222	0.223	0.224	0.225	0.224	0.223	0.222	
0.030	0.241	0.243	0.244	0.246	0.248	0.248	0.248	0.247	
0.035	0.259	0.262	0.264	0.267	0.270	0.271	0.272	0.271	
0.040	0.276	0.280	0.283	0.287	0.291	0.293	0.294	0.295	
0.045	0.292	0.297	0.301	0.306	0.311	0.315	0.316	0.318	
0.050	0.308	0.313	0.318	0.325	0.331	0.335	0.338	0.340	
0.060	0.327	0.344	0.350	0.360	0.369	0.375	0.379	0.383	
0.070	0.365	0.374	0.381	0.394	0.406	0.414	0.420	0.425	
0.080	0.390	0,402	0.411	0.426	0.441	0.452	0.459	0.466	
0.090	0.415	0.428	0.439	0.457	0.476	0.488	0.497	0.506	
0.100	0.439	0.454	0.467	0.488	0.509	0.524	0.535	0.545	
0.120	0.484	0.504	0.520	0.547	0.575	0.594	0.608	0.621	
0.140	0.527	0.551	0.571	0.603	0.638	0.662	0.679	0.696	
0.160	0.568	0.596	0.620	0.659	0.700	0.728	0.748	0.768	
0.180	0.608	0.640	0.668	0.712	0.759	0.792	0.815	0.837	
0.200	0.646	0.683	0.714	0.765	0.818	0.854	0.880	0.904	
0.240	0.720	0.766	0.804	0.866	0.930	0.972	1.003	1.031	
0.280	0.791	0.845	0.891	0.962	1.035	1.083	1.115	1.143	
0.320	0.859	0.921	0.973	1.054	1.134	1.184	1.216	1.242	
0.360	0.925	0.995	1.053	1.141	1.226	1.275	1.305	1.325	
0.400	0.989	1.067	1.130	1.224	1.309	1.356	1.385	1.410	

Fuente: Annaratone (2008)

Las tablas utilizadas en el libro Termodinámica (Cengel & Boles, 2012) toman la temperatura de 0 °C como estado de referencia, y tanto la energía interna y la entalpía tienen asignados valores de 0 kJ/kg, lo que genera que el cálculo de h_1 resulte:

$$h_1 = \int_0^{t_1} c_p dt \left[\frac{kJ}{kg}\right] \tag{2.89}$$

Cabe mencionar que la elección del estado de referencia no tiene efecto en el cálculo de Δh .

Explicado el cálculo de entalpías se procede a desarrollar de antemano las integraciones para cada fluido en específico.

2.2.5.1. Agua y vapor de agua sobrecalentado

$$h = 421.96 \frac{t}{100} - 9.36 \left(\frac{t}{100}\right)^2 + 5.74 \left(\frac{t}{100}\right)^3 \left[\frac{kJ}{kg}\right]$$
(2.90)

Utilizando t en °C, el resultado de h resulta en kJ/kg. Esta ecuación es válida para temperaturas del agua entre [20 - 250]°C según Annaratone (2008).

Para el caso del vapor de agua sobrecalentado no se puede determinar una fórmula por lo que se usa las tablas A-6 del libro Termodinámica (Cengel & Boles, Termodinámica, 2012) adjuntada como el anexo 3.

2.2.5.2. Aire

$$h = 1003.79 \frac{t}{1000} + 37.76 \left(\frac{t}{1000}\right)^2 + 72 \left(\frac{t}{1000}\right)^3 \left[\frac{kJ}{kg}\right]$$
(2.91)

Esta ecuación, planteada por Annaratone (2008) es válida para temperaturas del aire entre $[0 - 300]^{\circ}C$.

2.2.5.3. Gases de combustión

Los gases de combustión se consideran como mezcla de gases ideales por lo que según Cengel, la entalpía molar de los gases de combustión a una temperatura absoluta T se calcula en base a la sumatoria de los productos de la fracción molar de cada componente \bar{x}_i y la entalpía molar respectiva al componente \bar{h}_i quedando la ecuación (2.92) como:

$$\bar{h} = \sum \bar{x}_i \bar{h}_i \left[\frac{kJ}{kmol} \right]$$
(2.92)

De la misma manera que se realizó el cálculo de h_1 en la ecuación (2.88), \bar{h}_i se puede calcular para cada componente integrando el valor de \bar{c}_{p_i} como se muestra la ecuación (2.94) válida para gases ideales expuesta en la tabla A-2c del libro Termodinámica (Cengel & Boles, 2012), adjuntada como el anexo 1.

$$\bar{c}_{p_i} = A_i + B_i(t) + C_i(t)^2 + D_i(t)^3 \left[\frac{kJ}{kmol K}\right]$$
(2.93)

$$\bar{h}_{i} = \int_{0}^{t} \bar{c}_{p_{i}} dt \left[\frac{kJ}{kmol}\right]$$

$$\bar{h}_{i} = A_{i}(t) + B_{i} \left(\frac{t}{2}\right)^{2} + C_{i} \left(\frac{t}{3}\right)^{3} + D_{i} \left(\frac{t}{4}\right)^{4} \left[\frac{kJ}{kmol}\right]$$
(2.94)

Los valores de las constantes A, B, C y D para cada componente se obtienen de la tabla 5, extraída de la tabla A-2c del libro Termodinámica (Cengel & Boles, 2012).

Finalmente, la ecuación de la entalpía de los gases de combustión en kJ/kg viene representada por la ecuación (2.95), donde M es la masa molar de los gases de combustión en kg/kmol.

Gas	A_i	B _i	C _i	D _i			
<i>CO</i> ₂	22.26	0.05981	-3.501×10^{-5}	7.469×10^{-9}			
СО	28.16	0.001675	5.372×10^{-6}	-2.222×10^{-9}			
0 ₂	25.48	0.0152	-7.155×10^{-6}	→ 1.312 × 10 ⁻⁹			
N_2	28.9 🧹	-1.571×10^{-3}	8.081×10^{-6}	-2.873×10^{-9}			
H_2O	32.34 -	0.001923	-1.055×10^{-5}	$> -3.595 \times 10^{-9}$			

 Tabla 5. Coeficientes de entalpía de gases de combustión

Fuente: (Cengel & Boles, Termodinámica, 2012)

$$h = \frac{\bar{h}}{M} = \frac{\bar{h}}{\sum x_i M_i} \left[\frac{kJ}{kg}\right]$$
(2.95)

2.2.6. Diseño de superficies de intercambio de calor

Uno de los principales trabajos de esta investigación es el cálculo de intercambio de calor en los diferentes componentes del generador de vapor.

Como ya se ha explicado anteriormente el calor se transmite por una variación de temperatura que existe entre un fluido caliente hacia un fluido frío a través de una pared de separación, en nuestro caso sería el espesor de un tubo. Para dicha variación es necesario el cálculo de una diferencia media de temperatura.

2.2.6.1. Diferencia de temperatura media logarítmica

Haciendo uso de las temperaturas t' y t'' las cuales representan al fluido caliente y al fluido frío respectivamente se calcula la diferencia de temperatura media logarítmica (Δt_{ml}), pero primero es necesario determinar el tipo de flujo, paralelo o contracorriente, que siguen estos fluidos. Se plantea en las figuras 32 y 33 los dos tipos de Δt_{ml} .

Cengel & Ghajar (2011) plantean la siguiente ecuación (2.96) para el cálculo de la diferencia de temperatura media logarítmica.

$$\Delta t_{ml} = \frac{\Delta t_I - \Delta t_{II}}{\ln\left(\frac{\Delta t_I}{\Delta t_{II}}\right)} [K]$$
(2.96)

En el cálculo del coeficiente global de transferencia U, para el coeficiente de transferencia de calor del fluido frío es mejor utilizar la media aritmética de temperaturas, mientras que para el fluido caliente se utiliza la diferencia media logarítmica de temperaturas. En cambio, para la temperatura de película en el cálculo del coeficiente de calor α , la temperatura de referencia debe ser la media aritmética entre la temperatura que se mencionó anteriormente y la temperatura de pared.

Figura 32. Variación de temperaturas para flujos paralelos Fuente: Annaratone (2008)

Figura 33. Variación de temperaturas para flujos contracorriente Fuente: Annaratone (2008)

La ecuación (2.97) de la temperatura media logarítmica del fluido caliente viene mencionada en Annaratone (2008). Cabe mencionar que en la siguiente ecuación se utiliza temperaturas absolutas.

$$T'_{ml} = \frac{T'_1 - T'_2}{\ln\left(\frac{T'_1}{T'_2}\right)} [K]$$
(2.97)

2.2.6.2. Cálculo general de superficies

11

Para mantener el equilibrio térmico, Annaratone (2008) menciona que se debe cumplir la igualdad (2.99) respecto al flujo de cálculo calor transferido al fluido frío por unidad de tiempo (\dot{Q}) expresado en Watts.

$$\dot{Q} = \dot{m}''(h''_2 - h''_1) = \eta_i \dot{m}'(h'_2 - h'_1) \ [W]$$
(2.98)

En la igualdad están involucradas $\dot{m}'' \neq \dot{m}'$ que son los flujos másicos de los fluidos frío y caliente respectivamente, $h''_2 \neq h''_1$ que son las entalpías de salida e ingreso del fluido frío e igualmente en el fluido caliente las entalpías de salida e ingreso $h'_2 \neq h'_1$. Además, queda

expresada en la igualdad η_i que es la eficiencia del intercambiador de calor, ya que toda la energía del fluido caliente no la recibe el fluido frío.

Entonces, para empezar el cálculo se utiliza la principal ecuación (2.99) dada por Annaratone (2008):

$$\dot{Q} = US\Delta t_{ml} \ [W] \tag{2.99}$$

Haciendo uso de la igualdad (2.98), donde se conoce \dot{m}'' , \dot{m}' , h'_1 , h''_1 y η_i , es posible calcular \dot{Q} suponiendo una de las temperaturas de salida del fluido caliente o el frío, donde a su vez se conocería h'_2 o h''_2 respectivamente.

Luego se procede, si los fluidos son en sentido paralelo o contracorriente, a calcular una diferencia de temperatura media logarítmica Δt_{ml} y U se calcula con las ecuaciones (2.28) y (2.29) dependiendo sea el caso. Finalmente, S es calculada con la con la ecuación (2.99).

2.3. Pérdidas de presión en generadores de vapor

Un fluido que pasa por una superficie, en este caso dentro de un tubo, está sujeto a una caída de presión la cual está directamente relacionada con la velocidad del fluido. Esta se origina a través del rozamiento entre el fluido y la superficie que lo contiene. Además de la velocidad, influye también la viscosidad, la densidad, el diámetro (puede ser el real o hidráulico) y por la rugosidad de la superficie (tubo). Estas caídas de presión son llamadas distribuidas o pérdidas primarias.

También existen las denominadas caídas de presión concentradas o pérdidas secundarias, las cuales se deben a cambios de área de sección transversal o cambios en la dirección del flujo como por ejemplo el acople de válvulas o codos respectivamente. En estas la viscosidad y la rugosidad ya no intervienen, pero a diferencia también influye las características geométricas del elemento que perturba el flujo.

Debido a que se ha determinado anteriormente que el fujo del fluido será turbulento, las ecuaciones a continuación que se mostrarán serán para este tipo.

Otro ejemplo de caídas de presión son las que ocurren cuando el fluido pasa a través de un banco de tubos, en el cual influyen la velocidad, la densidad, el número de filas, el número de Reynolds y las dimensiones de paso longitudinal y transversal del banco de tubos.

2.3.1. Para flujos turbulentos en el interior de tubos

2.3.1.1. Caídas de presión distribuidas o pérdidas primarias

La caída de presión Δp a lo largo de una tubería recta esta dada bajo la ecuación (2.100) de Darcy-Weisbach según Cengel & Cimbala (2006).

$$\Delta p = \lambda \frac{L}{d_i} \rho \frac{V^2}{2} \quad [Pa] \tag{2.100}$$

Como se dijo, la caída de presión distribuida viene determinado por la longitud del tubo L, el diámetro interno d_i , la densidad del fluido ρ , la velocidad del flujo V y un factor adimensional λ llamado factor de Darcy-Weisbach.

La ecuación (2.100) puede estar representada en función de la velocidad másica G quedando como:

$$\Delta p = \lambda \frac{L}{d_i} \frac{G^2}{2\rho} \quad [Pa] \tag{2.101}$$

En el caso que el área de sección transversal no fuera circular, se debe introducir el valor de diámetro hidráulico (d_h) , el cual se calcula con la ecuación (2.102) donde A_t es el área de sección transversal y P el perímetro húmedo.

$$d_h = \frac{4A_t}{P} \quad [m] \tag{2.102}$$

Una de las formas de calcular λ es con la ecuación de Blasius, válida para superficies lisas y para un número de Reynols $Re \le 10^5$.

$$\lambda = 0.316 \mathrm{Re}^{-0.25} \tag{2.103}$$

Y en el caso de un número de Reynold alto, válida para $10^6 \le Re \le 10^8$, tenemos la ecuación (2.104) planteada por Johann Nikuradse.

$$\lambda = 0.032 - 0.221 \operatorname{Re}^{-0.237} \tag{2.104}$$

Introduciendo el concepto de rugosidad relativa ε (ver figura 34), se tiene que esta es la relación entre la rugosidad máxima esperada de la superficie de contacto con el fluido y el diámetro real o hidráulico. En la figura está ε representado en función de los valores antes mencionados. Con ε se puede calcular el factor de fricción utilizando la ecuación (2.105) dada por Colebrook.

$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{\varepsilon}{3.7} + \frac{2.51}{Re\sqrt{\lambda}}\right)$$
(2.105)

Dado que es una ecuación no lineal, se debe iterar para poder llegar al valor de λ . Para este caso se propone el siguiente método. Primero la ecuación queda representada como:

$$\lambda = \frac{1}{4 \left[\log_{10} \left(\frac{\varepsilon}{3.7} + \frac{2.51}{Re\sqrt{\lambda}} \right) \right]^2}$$
(2.106)
ración se dará como:

Con lo que la iter

$$\lambda_{i} = \frac{1}{4\left[\log_{10}\left(\frac{\varepsilon}{3.7} + \frac{2.51}{Re\sqrt{\lambda_{i-1}}}\right)\right]^{2}}$$
(2.107)

Donde para λ_0 se halla cuando el término donde esta *Re* se hace 0, obteniendo:

$$\lambda_0 = \frac{1}{4(\log_{10}\varepsilon - 0.568)^2} \tag{2.108}$$

El valor de ε en caso de generadores de vapor, al ser de acero comercial se calcula con la ecuación (2.109).

$$\varepsilon = \frac{4.4 \times 10^{-5}}{d_i} \tag{2.109}$$

66

Existe otra forma de calcular λ , en función de Re y ε , utilizando el Diagrama de Moody representado en la figura 35.

Para casos que sean superficie lisa ($Re \times \varepsilon \le 10$), la ecuación (2.105) queda reducida como:

$$\frac{1}{\sqrt{\lambda}} = -2\ln\left(\frac{2.51}{Re\sqrt{\lambda}}\right) \tag{2.110}$$

Figura 35. Diagrama de Moody para hallar el factor de fricción Fuente: Annaratone (2008)

2.3.1.2. Caídas de presión concentradas o pérdidas secundarias

Las pérdidas de presión concentradas son producidas por los cambios de forma del flujo, generalmente por los accesorios que se utilizan en las tuberías como en las entradas y salidas, curvas o cambios de sección transversal. Estas se calculan con la ecuación (2.111) dada por Annaratone (2008).

$$\Delta p = \zeta \rho \frac{V^2}{2} \quad [Pa] \tag{2.111}$$

Donde depende de la densidad ρ , la velocidad del flujo V y ζ que es el coeficiente de resistencia (Cengel & Cimbala, 2006), el cual es independiente al número de Reynolds cuando Re > 3000.

Para cambios de diámetro se puede hallar ζ con la figura 36. Aquí se puede observar que para la salida de un tanque hacia un tubo d'_i se puede considerar infinito, por lo cual $\frac{d_i}{d'_i}$ resulta 0 haciendo el valor de $\zeta = 0.5$. En cambio, para la entrada de un tubo a un tanque, $\frac{d_i}{d'_i}$ resulta 0 con lo que la curva B hace que el valor de $\zeta = 1$.

Para el uso de codos de 45°, 90°, 135° y 180° se utiliza la figura 37 para calcular ζ . En cuanto a válvulas no existe un valor exacto ya que existen muchos tipos por lo que se debe consultar con la compañía proveedora (Annaratone, 2008). En la figura 38 se pueden observar algunos ejemplos que se pueden tomar de manera práctica, pero se recomienda utilizar los datos reales de fabricante (Cengel & Cimbala, 2006).

Figura 36. Factor ζ para variaciones abruptas de diámetro Fuente: Annaratone (2008)

Figura 37. Factor ζ para codos Fuente: Annaratone (2008)

Válvulas

Válvula de globo, totalmente abierta: $K_L = 10$ Válvula de compuerta, totalmente abierta: $K_L = 0.2$ Válvula de ángulo, totalmente abierta: $K_L = 5$ Válvula de compuerta, totalmente abierta: $K_L = 0.3$ Válvula de bola, totalmente abierta: $K_L = 0.05$ $\frac{1}{2}$ cerrada: $K_L = 2.1$ Válvula de charnela: $K_L = 2$ $K_L = 17$

* Ésos son valores representativos para coeficientes de pérdida. Los valores reales dependen principalmente del diseño y la fabricación de los accesorios y pueden diferir considerablemente de los valores dados (en especial para las válvulas). En el diseño final se deben usar los datos reales del fabricante.

Figura 38. Otros valores del factor ζ Fuente: Cengel & Cimbala (2006)

2.3.1.3. Caídas de presión en flujos a través de bancos de tubos

Un fluido que atraviesa un banco de tubos está sujeto a una caída de presión según la ecuación (2.112) dada por Annaratone (2008).

$$\Delta p = f_d f_a N \frac{\rho V^2}{2} \quad [Pa] \tag{2.112}$$

En la ecuación f_d y f_a son factores adimensionales, N es el número de filas de tubos que atraviesa el flujo, ρ la densidad del fluido y V la velocidad del flujo. Para el caso de f_a , para arreglo de tubos en línea se halla con la figura 39, y para arreglo de tubos escalonados se halla con la figura 40. En ambos casos se utiliza el valor del paso transversal s_t y el paso longitudinal s_l . En cuanto a f_d si $N \ge 10$ su valor es igual a 1 y para N < 10, f_d se calcula con la figura 41.

Figura 39. Factor f_a para pérdidas de presión de un banco de tubos en línea Fuente: Annaratone (2008)

Figura 40. Factor f_a para pérdidas de presión de un banco de tubos escalonados Fuente: Annaratone (2008)

Figura 41. Factor f_d para pérdidas de presión de un banco de tubos Fuente: Annaratone (2008)

Capítulo 3

Balances de energía y masa

En este capítulo se abordará los temas de análisis energético donde se calcularán eficiencias de la caldera. Se utilizará como modelo los cálculos de balance de energía y masa Metodología de Diseño de un Generador de Vapor Acuotubular Bagacero (Andrade-Liviapoma, 2015) y de los ejemplos resueltos en los libros "*Generatori di Vapore*" (Annaratone, 1986).

3.1. Hipótesis:

- El generador de vapor se considera un sistema termodinámico abierto de flujo estacionario. (Ver figura 42).
- Los gases de combustión se comportan como una mezcla de gases ideales.
- Los flujos que participan se muestran en la figura 42.

3.1.1. Datos iniciales

- \dot{m}_v : Capacidad de generación de vapor de la caldera [1000 kg/h]
- T_{vg} : Temperatura de salida de vapor generado [723.15 *K*]
- P_{vg} : Presión de salida de vapor generado [1200 kPa]
- T_{wa} : Temperatura de entrada de agua de alimentación [378.15 K]
- T_{ap} : Temperatura de ambiente o de entrada del aire primario [300.15 K]
- P^0 : Presión atmosférica o de entrada del aire primario [1 atm]
- Ø : Humedad relativa presente en el aire atmosférico [40%]
- W : Humedad presente en el bagazo [0.5 kg de agua/kg de bagazo seco]

- C : Ceniza presente en el bagazo en base seca [0.025 kg de ceniza/kg de bagazo seco]
- T_{g_ch} : Temperatura de salida de los gases de chimenea [453.15 K]
- T_{ref} : Temperatura de referencia de cálculo de entalpías (298.15 *K*)
- X_{co} : Fracción volumétrica o molar de CO en gases de combustión en base seca [0.003 kmol CO/kmol gases de combustión secos]
- *e* : Exceso de aire en combustión [30%]

3.2.1. Análisis del aire

Para esta sección se utilizará algunos conceptos dados por Cengel & Boles (2012) en relación con las propiedades del aire húmedo. Se asume el aire seco en su composición estándar (ver tabla 6).

Nombre	Símbolo	% en volumen	% en masa
Oxígeno	02	21	23.3
Nitrógeno	<i>N</i> ₂	79	76.7

Tabla 6. Composición del aire estándar

Fuente: Cengel & Boles (2012)

Con la finalidad de conseguir mejores resultados, se toma en cuenta la humedad del aire ambiente, por ende, se requiere el conocimiento de la presión barométrica (P⁰) en atm, la temperatura de bulbo seco (T_{ap}) en K y la humedad relativa local (\emptyset).

La presión de saturación del vapor a la temperatura ambiente o de entrada del aire $(P_{sat@T_{ap}})$ en atm, se calcula en la ecuación (3.1).

$$ln\left(\frac{P_{sat@T_{ap}}}{221.077}\right) = \left(\frac{0.01}{T_{ap}}\right) \left(647.31 - T_{ap}\right) \sum_{i=1}^{8} F_i \left(0.65 - 0.01(T_{ap} - 273.15)\right)^{i-1}$$
(3.1)

Donde los valores de F_i son, del 1 al 8 respectivamente, los siguientes: -741.9242, -29.7210, -11.55286, -0.08685635, 0.1094098, 0.439993, 0.250658, 0.05218684.

Una vez computada la presión de saturación del agua se continua con el cálculo de la presión de vapor (P_v) empleando la humedad relativa local (\emptyset).

$$P_{v} = \phi \left(P_{sat@T_{ap}} \right) [atm]$$
(3.2)

Al determinar la presión parcial del agua se procede a calcular la correlación de humedad simbolizada en moles de vapor de agua por mol de aire seco como se indica en la ecuación (3.3).

$$\bar{X}_{vapor} = \frac{P_v}{\frac{P^0}{101.325} - P_v} \left[\frac{kmol \ vapor \ de \ agua}{kmol \ de \ aire \ seco} \right]$$
(3.3)

3.2.2. Análisis del bagazo

Cuando se refiere a un espécimen de bagazo se hace alusión a las peculiaridades como: su composición química elemental, el análisis granulométrico y de las cenizas, así como el poder calorífico.

La humedad presente en el bagazo se sitúa alrededor del 50% (Díaz, 2008). En cálculos de combustión se emplea la composición en base húmeda que se refiere a la composición de 1 kg de combustible que incluye la humedad presente en el combustible y su contenido de ceniza.

Para la elaboración del balance de masa, para la simplificación del cálculo se usará como base el bagazo seco libre de ceniza. Dicho esto, se plantea las siguientes ecuaciones:

$$M_{bs}^{*} = M_{bh} - M_{W} - M_{C} \tag{3.4}$$

$$M_W = W \times M_{bh} \tag{3.5}$$

$$M_C = C \times (M_{bh} - W \times M_{bh}) \tag{3.6}$$

Donde:

- M_{bs}^* : Masa molar de bagazo seco sin ceniza [kg de bagazo seco sin ceniza / kmol de bagazo seco sin ceniza]
- M_{bh} : Masa de bagazo húmedo por kmol de bagazo seco sin ceniza
 [kg de bagazo húmedo / kmol de bagazo seco sin ceniza]
- M_W : Humedad por kmol de bagazo seco sin ceniza [kg de agua /kmol de bagazo seco sin ceniza]
- M_C : Masa de ceniza por kmol de bagazo seco sin ceniza [kg de ceniza / kmol de bagazo seco sin ceniza]

En el análisis energético, se utilizó la composición elemental en masa del bagazo seco sin ceniza: $C^2(47\%)$, $O^3(44\%)$, $H^4(6.5\%)$ (Hugot E., 1986), La fórmula para el bagazo se calculará en base a los pesos moleculares:

 $C_X H_Y O_Z$

$$12.011X = 47 \to X = 3.913 \tag{3.7}$$

$$1.0079Y = 6.5 \to Y = 6.5 \tag{3.8}$$

$$16.000Z = 44 \to Z = 2.75 \tag{3.9}$$

² Porcentaje de carbono en bagazo seco sin ceniza

³ Porcentaje de oxígeno en bagazo seco sin ceniza

⁴ Porcentaje de hidrógeno en bagazo seco sin ceniza

Sustituyendo los valores en la fórmula del bagazo para obtener una fórmula empírica: $C_{3.193}H_{6.5}O_{2.75}$.

A partir de la fórmula empírica para el bagazo hallada se calcula el valor de M_{bs}^* mediante la ecuación.

$$M_{bs}^{*} = 12.011 \times 3.913 + 1.00794 \times 6.5 + 16 \times 2.75$$
$$M_{bs}^{*} = 97.55 \left[\frac{kg \ bagazo \ seco \ sin \ ceniza}{kmol \ bagazo \ seco \ sin \ ceniza} \right]$$
(3.10)

Asimismo:

$$M_{bh} = \frac{M_{bs}^{*}}{1 - W - C \times (1 - W)} \left[\frac{kg \, bagazo \, húmedo}{kmol \, bagazo \, seco \, sin \, ceniza} \right]$$
(3.11)

3.2.3. Balance del agua-vapor

Se rige por la siguiente ecuación:

$$\dot{m_w} = \dot{m_v}$$

Donde:

 m_w : Flujo másico de agua de alimentación [kg/h] m_v : Flujo másico de vapor de agua generado [kg/h]

3.2.4. Balance de masa en la combustión

Dentro del hogar se lleva a cabo un proceso de combustión que se consigue expresar en forma de ecuaciones químicas, y donde se libera la energía requerida para la generación de vapor.

Asumiendo que los gases expuestos en la tabla 1 se combinan como productos de la combustión, se sigue a establecer las ecuaciones. El dióxido de azufre se toma en cuenta ya que su presencia es imperceptible en el bagazo. Los gases se asumen como una mezcla de gases ideales. Con estos fundamentos, se sigue con el procedimiento indicado:

(3.12)

Se balancea la ecuación química de combustión completa sin exceso de aire:

$$C_{3.193}H_{6.5}O_{2.75} + a_t(O_2 + 3.76N_2) \rightarrow 3.913CO_2 + 3.25H_2O + 15.65N_2$$
(3.13)

Donde a_t es el coeficiente de aire teórico necesario para una combustión completa. Desarrollando la ecuación de combustión completa sin exceso de aire:

$$a_t = 4.163 \left[kmol \ O_2 / kmol \ bagazo \ seco \ sin \ ceniza \right]$$
(3.14)

Se procede a balancear la ecuación de combustión completa considerando el exceso de aire y la humedad presente. La ecuación química resulta así:

$$C_{3.193}H_{6.5}O_{2.75} + a_r(O_2 + 3.76N_2) + n_vH_2O \to aCO_2 + bH_2O + cO_2 + dN_2$$
(3.15)

Se calcula el coeficiente de aire real en función al porcentaje de exceso de aire y al valor de a_t obtenido de la ecuación (3.14).

$$a_r = a_t (1+e) \tag{3.16}$$

Donde:

- a_r : Coeficiente de aire real [kmol O_2 /kmol bagazo seco sin ceniza]
- e : Exceso de aire en combustión [%]

En primera instancia se determina el coeficiente n_v que simboliza el número de moles de vapor de agua presente en el aire en [*kmol vapor/kmol bagazo seco* sin *ceniza*]. Obtenida la fracción molar de vapor de agua (\bar{x}_{vapor}), se desarrolla:

$$n_v = n_a \times X_{vapor} \tag{3.17}$$

Donde n_a simboliza el número de moles de aire seco presentes en la combustión en [*kmol aire seco/kmol bagazo*].

Se requiere desarrollar la ecuación (3.15) para determinar los factores a, b, c, d. Se consiguen establecer las siguientes equivalencias:

$$a = 3.913$$
 (3.18)

$$b = 3.25 + n_v \tag{3.19}$$

$$c = \frac{2a_r + 2.75 + n_v - b - 2a}{2} \tag{3.20}$$

$$d = 3.76a_r \tag{3.21}$$

Debe existir los efectos de una combustión incompleta en la reacción, por lo tanto, se realiza la ecuación química (3.22) que incorpora la generación de CO y oxígeno molecular en función de la disociación de dióxido de carbono.

$$2CO_2 = 2CO + O_2$$
 (3.22)

Esta ecuación muestra que por cada 2 moles de dióxido de carbono se forman 2 moles de monóxido de carbono y 1 mol de oxígeno. En la ecuación (3.23) se plantea los gases formados en una combustión incompleta en función de los gases en combustión completa calculados.

$$aCO_2 + bH_2O + cO_2 + dN_2 \rightarrow a_iCO_2 + b_iH_2O + c_iO_2 + d_iN_2 + e_iCO$$
 (3.23)

A partir de los valores de a, b, c y d calculados precedentemente, y a la ecuación (3.23) se consigue establecer las siguientes equivalencias:

$$e_i = \frac{\bar{X}_{CO}(d+a+c)}{1 - \frac{\bar{X}_{CO}}{2}}$$
(3.24)

0-

$$a_i = a - e_i \tag{3.25}$$

$$b_i = b \tag{3.26}$$

$$c_i = c + \frac{e_i}{2} \tag{3.27}$$

$$d_i = d \tag{3.28}$$

En las ecuaciones anteriores se observa que los factores a_i , b_i , c_i , d_i y e_i simbolizan el número de kmol formado de cada gas por cada kmol de combustible. Además \overline{X}_{CO} es la fracción molar o volumétrica de *CO* en los gases de combustión en base seca.

En función de los resultados del apartado anterior, se calculará la masa y el volumen de gases de combustión formados por cada kg de combustible, que en este caso es el bagazo de caña. Para esto se requiere de la masa molar del bagazo húmedo M_{bh} hallada de la ecuación (3.11). Por lo que resulta:

$$C0 = e_i \left(\frac{M_{CO}}{M_{bh}}\right) \tag{3.29}$$

$$CO_2 = a_i \left(\frac{M_{CO_2}}{M_{bh}} \right) \tag{3.30}$$

$$H_2 0 = b_i \left(\frac{M_{H_2 0}}{M_{bh}} \right) + W \tag{3.31}$$

$$O_2 = c_i \binom{M_{O_2}}{M_{bh}}$$
(3.32)

$$N_2 = d_i \left(\frac{M_{N_2}}{M_{bh}} \right) \tag{3.33}$$

Donde:

- *CO* : Masa de CO generada por cada kg de bagazo [kg CO/kg bagazo]
- CO_2 : Masa de CO_2 generada por cada kg de bagazo $[kg CO_2/kg bagazo]$
- H_2O : Masa de H_2O generada por cada kg de bagazo [$kg H_2O/kg bagazo$]
- O_2 : Masa de O_2 generada por cada kg de bagazo [$kg O_2/kg bagazo$]
- N_2 : Masa de N2 generada por cada kg de bagazo [$kg N_2/kg bagazo$]
- M_{CO} : Masa molar del CO [kg CO/kmol CO]
- M_{CO_2} : Masa molar del CO [kg CO_2 /kmol CO_2]
- M_{H_2O} : Masa molar del H20 [kg H₂O/kmol H₂O]
- M_{O_2} : Masa molar del O2 [kg $O_2/kmol O_2$]
- M_{N_2} : Masa molar del N2 [kg N₂/kmol N₂]

Luego es necesario calcular la relación de la masa de gases de combustión total (ecuación 3.34) y en base seca (ecuación 3.35) en función a la masa del combustible:

$$G_m = CO + CO_2 + H_2O + O_2 + N_2 \tag{3.34}$$

$$G'_m = CO + CO_2 + O_2 + N_2 \tag{3.35}$$

Donde G_m se expresa en [kg gases de combustión/kg de bagazo] y G'_m en [kg gases de combustión secos/kg de bagazo]

De esta forma se halla el volumen generado de los gases de combustión por cada kg de bagazo, dividiendo las masas halladas precedentemente entre la densidad respectiva de cada gas en condiciones normales:

$$[CO_2] = CO_2 / \rho_{CO_2}$$
(3.37)

$$[H_2 0] = H_2 0 / \rho_{H_2 0}$$
(3.38)

$$[O_2] = O_2 / \rho_{O_2} \tag{3.39}$$

$$[N_2] = N_2 / \rho_{N_2} \tag{3.40}$$

Donde:

- [CO] : Volumen de CO generado por cada kg de bagazo $[Nm^3 CO/kg de bagazo]^5$
- $[CO_2]$: Volumen de CO generado por cada kg de bagazo $[Nm^3 CO_2/kg de bagazo]$
- $[H_2 0]$: Volumen de H20 generado por cada kg de bagazo $[Nm^3 H_2 0/kg de bagazo]$
- $[O_2]$: Volumen de O2 generado por cada kg de bagazo $[Nm^3 O_2/kg de bagazo]$
- $[N_2]$: Volumen de N2 generado por cada kg de bagazo $[Nm^3 N_2/kg \ de \ bagazo]$

Por último, se calcula la relación del volumen total de gases de combustión generado (ecuación 3.41) y el volumen seco (ecuación 3.42) en función de la masa del combustible:

⁵ Nm³: metros cúbicos en condiciones normales

$$G_V = [CO] + [CO_2] + [H_2O] + [O_2] + [N_2]$$
(3.41)

$$G'_{V} = [CO] + [CO_{2}] + [O_{2}] + [N_{2}]$$
(3.42)

Donde G_V se expresa en $[Nm^3 gases de combustión/kg de bagazo]$ y G'_V en $[Nm^3 gases de combustión secos/kg de bagazo]$

En cuanto a las fracciones molares en base seca de los gases de combustión se puede obtener realizando las siguientes ecuaciones:

$$X_{CO_2} = \frac{a_i}{a_i + c_i + d_i + e_i}$$
(3.43)

$$X_{O_2} = \frac{c_i}{a_i + c_i + d_i + e_i}$$
(3.44)

$$X_{N_2} = \frac{d_i}{a_i + c_i + d_i + e_i}$$
(3.45)

Y en base húmeda:

$$\bar{X}_{CO} = \frac{[CO]}{G_V} \tag{3.46}$$

$$\bar{X}_{CO_2} = \frac{[CO_2]}{G_V} \tag{3.47}$$

$$\bar{X}_{H_20} = \frac{[H_20]}{G_V}$$
(3.48)

$$\bar{X}_{O_2} = \frac{[O_2]}{G_V}$$
(3.49)

$$\bar{X}_{N_2} = \frac{[N_2]}{G_V}$$
(3.50)

Por lo que la masa molar de los gases de combustión queda expresada en la ecuación (3.51).

$$M_g = \bar{X}_{CO} M_{CO} + \bar{X}_{CO_2} M_{CO_2} + \bar{X}_{H_2O} M_{H_2O} + \bar{X}_{O_2} M_{O_2} + \bar{X}_{N_2} M_{N_2}$$
(3.51)

Por último, se establecen las relaciones aire/combustible de masa tanto como de volumen. Para este paso se requerirá usar términos calculados de los apartados anteriores como a_r (ecuación 3.16), n_v (ecuación 3.17) y la masa molar del bagazo húmedo M_{bh} (ecuación 3.11) además de la densidad de los gases de combustión en condiciones normales $\rho_{a 0}$:

$$A_{m} = \frac{a_{r} (M_{O_{2}} + 3.76M_{N_{2}}) + n_{v} M_{H_{2}O}}{M_{bh}} \left[\frac{kg \ aire}{kg \ bagazo} \right]$$
(3.52)

$$A_{v} = \frac{a_{r} \left(\frac{M_{O_{2}}}{\rho_{O_{2}}} + 3.76 \frac{M_{N_{2}}}{\rho_{O_{2}}}\right) + n_{v} \frac{M_{H_{2}O}}{\rho_{H_{2}O}}}{M_{ph}} \left[\frac{Nm^{3} \ aire}{Nm^{3} \ aire}\right]$$
(3.53)

$$\rho_{g_0} = \frac{G_m}{G_V} \left[\frac{kg \ de \ aire}{m^3 \ de \ aire} \right]$$
(3.54)

3.3. Balance de energía

Para calcular los niveles energéticos de cada uno de los flujos de materia y energía de la caldera, primero se calculan los valores promedio de los coeficientes extraídos de la tabla 5.

$$A_{prom} = \bar{X}_{CO}A_{CO} + \bar{X}_{CO_2}A_{CO_2} + \bar{X}_{H_2O}A_{H_2O} + \bar{X}_{O_2}A_{O_2} + \bar{X}_{N_2}A_{N_2}$$
(3.55)

$$B_{prom} = \frac{\bar{X}_{CO}B_{CO} + \bar{X}_{CO_2}B_{CO_2} + \bar{X}_{H_2O}B_{H_2O} + \bar{X}_{O_2}B_{O_2} + \bar{X}_{N_2}B_{N_2}}{2}$$
(3.56)

$$C_{prom} = \frac{\bar{X}_{CO}C_{CO} + \bar{X}_{CO_2}C_{CO_2} + \bar{X}_{H_2O}C_{H_2O} + \bar{X}_{O_2}C_{O_2} + \bar{X}_{N_2}C_{N_2}}{3}$$
(3.57)

$$D_{prom} = \frac{\bar{X}_{CO}D_{CO} + \bar{X}_{CO_2}D_{CO_2} + \bar{X}_{H_2O}D_{H_2O} + \bar{X}_{O_2}D_{O_2} + \bar{X}_{N_2}D_{N_2}}{4}$$
(3.58)

Luego se calculan las entalpías molares a la temperatura de gases combustión en la salida de la chimenea y en la temperatura de referencia \bar{h}_{tgch} y \bar{h}_{tref} respectivamente de cada componente del aire húmedo ambas en [kJ/kmol].

$$\bar{h}_{Co_tgch} = A_{Co}T_{g_ch} + B_{Co}\frac{T_{g_ch}^2}{2} + C_{Co}\frac{T_{g_ch}^3}{3} + D_{Co}\frac{T_{g_ch}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.59)

$$\bar{h}_{CO_2_tgch} = A_{CO_2}T_{g_ch} + B_{CO_2}\frac{T_{g_ch}^2}{2} + C_{CO_2}\frac{T_{g_ch}^3}{3} + D_{CO_2}\frac{T_{g_ch}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.60)

$$\bar{h}_{H_2O_tgch} = A_{H_2O}T_{g_ch} + B_{H_2O}\frac{T_{g_ch}^2}{2} + C_{H_2O}\frac{T_{g_ch}^3}{3} + D_{H_2O}\frac{T_{g_ch}^4}{4} \left[\frac{kJ}{kmol}\right]$$
(3.61)

$$\bar{h}_{O_2_tgch} = A_{O_2}T_{g_ch} + B_{O_2}\frac{T_{g_ch}^2}{2} + C_{O_2}\frac{T_{g_ch}^3}{3} + D_{O_2}\frac{T_{g_ch}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.62)

$$\bar{h}_{N_2_tgch} = A_{N_2}T_{g_ch} + B_{N_2}\frac{T_{g_ch}^2}{2} + C_{N_2}\frac{T_{g_ch}^3}{3} + D_{N_2}\frac{T_{g_ch}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.63)

$$\bar{h}_{CO_tref} = A_{CO}T_{ref} + B_{CO}\frac{T_{ref}^{2}}{2} + C_{CO}\frac{T_{ref}^{3}}{3} + D_{CO}\frac{T_{ref}^{4}}{4}\left[\frac{kJ}{kmol}\right]$$
(3.64)

$$\bar{h}_{CO_2_tref} = A_{CO_2}T_{ref} + B_{CO_2}\frac{T_{ref}^2}{2} + C_{CO_2}\frac{T_{ref}^3}{3} + D_{CO_2}\frac{T_{ref}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.65)

$$\bar{h}_{H_2O_tref} = A_{H_2O}T_{ref} + B_{H_2O}\frac{T_{g_ch}^2}{2} + C_{H_2O}\frac{T_{ref}^3}{3} + D_{H_2O}\frac{T_{ref}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.66)

$$\bar{h}_{O_2_tref} = A_{O_2}T_{ref} + B_{O_2}\frac{T_{ref}^2}{2} + C_{O_2}\frac{T_{ref}^3}{3} + D_{O_2}\frac{T_{ref}^4}{4}\left[\frac{kJ}{kmol}\right]$$
(3.67)

$$\bar{h}_{N_{2}_tref} = A_{N_{2}}T_{ref} + B_{N_{2}}\frac{T_{ref}^{2}}{2} + C_{N_{2}}\frac{T_{ref}^{3}}{3} + D_{N_{2}}\frac{T_{ref}^{4}}{4}\left[\frac{kJ}{kmol}\right]$$
(3.68)

Por último, se procede a hallar las entalpías del gas de combustión a la temperatura de salida de chimenea y a la temperatura de referencia ambas en [kJ/kg].

$$h_{g_ref} = \frac{\bar{h}_{CO_tref}\bar{X}_{CO} + \bar{h}_{CO_2_tref}\bar{X}_{CO_2} + \bar{h}_{H_2O_tref}\bar{X}_{H_2O} + \bar{h}_{O_2_tref}\bar{X}_{O_2} + \bar{h}_{N_2_tref}\bar{X}_{N_2}}{M_g} \left[\frac{kJ}{kg}\right]$$
(3.69)

$$h_{g_{ch}} = \frac{\bar{h}_{CO_{t}gch}\bar{X}_{CO} + \bar{h}_{CO_{2}tgch}\bar{X}_{CO_{2}} + \bar{h}_{H_{2}O_{t}gch}\bar{X}_{H_{2}O} + \bar{h}_{O_{2}tgch}\bar{X}_{O_{2}} + \bar{h}_{N_{2}tgch}\bar{X}_{N_{2}}}{M_{g}} \left[\frac{kJ}{kg}\right]$$
(3.70)

3.3.1. Ecuación de conservación de la energía

Se plantea la ecuación de conservación de la energía para un sistema abierto estacionario equiparando flujos energía de entrada y salida:

$$\dot{Q}_{i} + \dot{Q}_{ap} + \dot{Q}_{c} = \dot{Q}_{ci} + \dot{Q}_{cz} + \dot{Q}_{rp} + \dot{Q}_{ch} + \dot{Q}_{a} \quad \left[\frac{kJ}{h}\right]$$
(3.71)

Donde:

$$\dot{Q}_i : \text{Potencia térmica por la combustión del bagazo } [kJ/h] \dot{Q}_{ap} : \text{Potencia térmica con que entra el aire del ambiente } [kJ/h] \dot{Q}_c : \text{Potencia térmica del bagazo entrante } [kJ/h] \dot{Q}_{ci} : \text{Potencia térmica debido a combustión incompleta } [kJ/h]$$

- \dot{Q}_{cz} : Potencia térmica debido a ceniza [kJ/h]
- \dot{Q}_{rp} : Potencia térmica debido a radiación externa [kJ/h]
- \dot{Q}_{ch} : Potencia térmica debido a calor sensible con que se expulsan los gases de combustión a la atmósfera [kJ/h]
- \dot{Q}_a : Potencia térmica neta aprovechable para generación de vapor [kJ/h]

Se precisa \dot{m}_c tal como el flujo másico de bagazo en [kg/h] y se divide la ecuación (3.71) entre \dot{m}_c resultando:

$$q_i + q_{ap} + q_c = q_{ci} + q_{cz} + q_{rp} + q_{ch} + q_a \left[\frac{kJ}{kg}\right]$$
(3.72)

Despejando la ecuación (3.72):

$$q_a = q_i + q_{ap} + q_c - (q_{ci} + q_{cz} + q_{rp} + q_{ch})$$
(3.73)

Expresando \dot{q}_a en función de \dot{m}_c y despejando:

$$\frac{\dot{Q}_a}{\dot{m}_c} = q_i + q_{ap} + q_c - \left(q_{ci} + q_{cz} + q_{rp} + q_{ch}\right)$$
(3.74)

$$\dot{m}_{c} = \frac{Q_{a}}{q_{i} + q_{ap} + q_{c} - (q_{ci} + q_{cz} + q_{rp} + q_{ch})} \left[\frac{kg}{h}\right]$$
(3.75)

Donde cada elemento "q" esta expresado en [kJ/kg]

3.3.2. Calor aprovechable

El flujo de calor aprovechable es la potencia térmica final efectiva que se emplea para la generación de vapor y viene expresada por la ecuación (3.76).

$$\dot{Q}_a = \dot{m}_v \left(h_{vg} - h_{wa} \right) \left[\frac{kJ}{h} \right]$$
(3.76)

Donde:

 h_{wa} : Entalpía de agua de alimentación a $T_{wa}[kJ/kg]$

 h_{vg} : Entalpía del vapor de agua generado a la salida a T_{vg} y P_{vg} [kJ/kg]

 \dot{m}_v : Flujo de vapor generado [kg/h]

3.3.3. Ganancias de energía

Se definen como las distintas contribuciones de energía al sistema termodinámico que benefician la producción de vapor, donde la principal es el calor liberado durante la combustión del bagazo, es decir, por su poder calorífico.

3.3.3.1. Energía por unidad de masa liberada por la combustión

La energía por unidad de masa liberada en la combustión (q_i) viene expresada por el poder calorífico inferior del combustible (PCI) donde, en el caso del bagazo de caña de azúcar, varía principalmente en función de la humedad (W) que porta. La ecuación (3.77) es una aproximación del PCI del bagazo determinada por Emile Hugot (1986).

$$q_i = PCI = (4250 - 4850 \times W) \times 4.1858 [kJ/kg]$$
 (3.77)

3.3.3.2. Energía por unidad de masa de aire entrante

La energía por unidad de masa de aire entrante (q_{ap}) se calcula con la ecuación (3.78), que está determinada en función términos de la relación aire/combustible hallada en el apartado anterior con la ecuación (3.17).

$$q_{ap} = \left(c_{p_a} \left(\frac{a_r (M_{O_2} + 3.76M_{N_2})}{M_{bh}} \right) + c_{p_v} \left(\frac{n_v M_{H_2O}}{M_{bh}} \right) \right) (T_{ap} - T_{ref}) \ [kJ/kg] \tag{3.78}$$

Donde:

 T_{ap} : Temperatura de entrada del aire primario [K]

 T_{ref} : Temperatura de referencia [K]

 c_{p_n} : Calor específico a presión constante del aire entrante $[kJ/kg \times K]$

 c_{p_n} : Calor específico a presión constante del vapor de agua en el aire [kJ/kg K]

Dado que las temperaturas de entrada del aire son bajas se utilizan calores específicos constantes a 300.15 K, además de una temperatura de referencia T_{ref} de 298.15 K. La ecuación (3.78) queda como:

$$q_{ap} = \left(1.005 \left(\frac{a_r (M_{O_2} + 3.76M_{N_2})}{M_{bh}}\right) + 1.8723 \left(\frac{n_v M_{H_2O}}{M_{bh}}\right)\right) \times (T_{ap} - T_{ref}) \quad [kJ/kg]$$
(3.79)

3.3.3.3. Energía por unidad de masa del bagazo entrante

De la ecuación (3.80) se tiene que el término c_{p_b} es el calor específico a presión constante del bagazo en [kJ/kg K] y T_b es la temperatura de bagazo de alimentación en [K]. Respecto a c_{p_b} , resulta en función de la humedad presente en el bagazo y se calcula mediante la ecuación (3.81) que es una aproximación desarrollada por Emile Hugot (1986):

$$q_c = c_{p_b}(T_b - 298.15) \ [kJ/kg]$$
 (3.80)

$$c_{p_b} = 4.1868 \times (0.42 \times (1 - W) + W) \ [kJ/kg K]$$
(3.81)

3.3.4. Pérdidas de energía

3.3.4.1. Pérdida por calor sensible en gases de combustión

La pérdida por chimenea (q_{ch}) es la que simboliza el calor sensible que se desaprovecha con los gases de combustión cuando son expulsados por la chimenea. Se puede calcular con la siguiente ecuación:

$$q_{ch} = G_m (h_{g_ch} - h_{g_ref}) \ [kJ/kg]$$
(3.82)

Donde G_m es la relación másica de gases de combustión y del combustible expresada en [kg gases de combustión/kg de bagazo], h_{g_ch} es la entalpía de los gases de combustión a la temperatura T_{g_ch} expresada en [kJ/kg] y h_{g_ref} la entalpía de los gases de combustión a la temperatura de referencia T_{ref} .

3.3.4.2. Pérdida por combustión incompleta

La pérdida por combustión incompleta (q_{ci}) es la representación de la liberación incompleta de la energía del combustible por la formación de *CO* en vez de *CO*₂ durante la combustión, ya que a que el primer compuesto libera menos energía en la reacción.

Por esto depende únicamente del volumen de *CO* generado representado por [*CO*], donde las pérdidas de este tipo se calculan con la ecuación (3.83) propuesta por Annaratone (1985):

$$q_{ci} = [CO] \times 12644 \left[\frac{kJ}{kg \, bagazo \, h\acute{u}medo} \right]$$
(3.83)

3.3.4.3. Pérdida por ceniza

Las pérdidas por ceniza (q_{cz}) son producto de la masa de combustible que no se quema. Está en función únicamente de la masa de ceniza C presente en el combustible en base seca y del poder calorífico inferior del combustible, y se calcula con la ecuación (3.84):

$$q_{cz} = C \times PCI \left[\frac{kJ}{kg \ bagazo \ h\ umedo} \right]$$
(3.84)

3.3.4.4. Pérdida por radiación

Las pérdidas por radiación (q_{rp}) se generan por la radiación de calor hacia al entorno exterior de la caldera. Por facilidad de cálculo se asumirá que las pérdidas de este tipo que se generan en toda la superficie externa se ubican en un solo lugar, las cuales dependen del flujo de calor aprovechable \dot{Q}_a y del poder calorífico inferior del combustible *PCI*, calculadas con la ecuación (3.85) que plantea Annaratone (1985):

$$q_{rp} = \frac{0.35PCI}{\left(\frac{\dot{Q}_a}{3600}\right)^{0.4}} \left[\frac{kJ}{kg \ bagazo \ h\acute{u}medo}\right]$$
(3.85)

3.4. Rendimiento del sistema

Por último, en base de todo el análisis anterior se procede a calcular el rendimiento energético de la caldera (ecuación 3.86) y la capacidad de producción de vapor por kg de combustible (ecuación 3.87). Son necesarios en este paso el flujo másico de combustible

 (\dot{m}_c) hallado en ecuación (3.75), mientras que la capacidad de producción de vapor del generador de vapor \dot{m}_v es dato de diseño.

$$\eta_g = \frac{\dot{Q}_a}{\dot{m}_c \times PCI} \times 100 \,[\%] \tag{3.86}$$

$$R_{\nu/b} = \frac{\dot{m}_{\nu}}{\dot{m}_{c}} \left[\frac{kg \ de \ vapor}{kg \ de \ bagazo} \right]$$
(3.87)

Donde:

 η_g : Rendimiento global del generador de vapor [%]

 $R_{v/b}$: Relación de vapor producido por kg de bagazo [kg vapor/kg bagazo]

Capítulo 4

Diseño y dimensionamiento de la caldera

4.1. Bosquejo y datos de la caldera

En cuanto a la caldera escogida contendrá: una cámara de combustión, una pantalla, sobrecalentador, evaporador secundario, economizador y precalentador recuperativo. Respecto a las características que podemos mencionar de la caldera se tiene:

- Acuopirotubular (acuotubular en las paredes, pantalla, sobrecalentador, evaporador secundario y economizador, y pirotubular en el precalentador recuperativo)
- Circulación natural de agua
- Uso de bagazo como combustible
- Un solo calderín
- Tipo D

Se puede apreciar el flujo de los fluidos y el bosquejo de la caldera en la figura 43.

4.2. Requerimiento energético térmico

Para calcular el perfil de temperaturas el primer paso es hallar la presión de diseño P_d . Como dato empírico se considera que la presión de salida del vapor de la caldera P_{vg} es el 90% de P_d .

$$P_d = \frac{P_{vg}}{0.9} \ [kPa] \tag{4.1}$$

Se calcula la temperatura de saturación del agua a la presión de diseño $T_{sat@P_d}$, la cual debe ser mayor a la temperatura de agua de salida del economizador T_{w_ec2} en 40-60 K para

evitar que se evapore el agua en el economizador. Cabe destacar que T_{v_ev2} es igual a la temperatura de agua de entrada al evaporador T_{w_ev1} , ya que todo el calor absorbido produce solo el cambio de fase.

Con la anterior aclaración se tiene así el siguiente perfil de temperaturas del agua y aire:

$$T_{w_{ec1}} = T_{wa} \quad [K] \tag{4.2}$$

$$T_{w_{ec2}} = T_{sat@P_d} - 55 \ [K] \tag{4.3}$$

$$T_{w_ev1} = T_{sat@P_d} [K]$$
(4.4)

$$T_{v_ev2} = T_{sat@P_d} [K] \tag{4.5}$$

$$T_{w_sb1} = T_{w_ev2} \ [K] \tag{4.6}$$
$$T_{w_sb2} = T_{vg} [K] \tag{4.7}$$

$$T_{a_pr1} = T_{ap} \quad [K] \tag{4.8}$$

$$T_{a \ pr2} = 473.15 \ [K] \tag{4.9}$$

Donde $T_{w_{ec1}}$ es la temperatura de entrada de agua al economizador, T_{wa} es la temperatura de agua de alimentación, $T_{v_{ev2}}$ es la temperatura de vapor de salida del evaporador, $T_{w_{sb1}}$ la temperatura de agua de ingreso al sobrecalentador, $T_{w_{sb2}}$ la temperatura de agua de salida del sobrecalentador, T_{vg} la temperatura de vapor de salida de la caldera, $T_{a_{pr1}}$ y $T_{a_{pr2}}$ las temperaturas de aire de ingreso y salida al precalentador y T_{ap} la temperatura de aire primario o ambiente.

Con dichos datos se procede a calcular las entalpías en dichos puntos del proceso. Para $h_{w_{ec1}}$, $h_{w_{ec2}}$, $h_{w_{ev1}}$, $h_{w_{ev2}}$, $h_{w_{sb1}}$ y $h_{w_{sb2}}$ se puede usar el proceso de interpolación lineal antes visto utilizando las tablas del libro Termodinámica (Cengel & Boles, 2012). Cabe resaltar que $h_{w_{sb2}} = h_{vg}$. En cambio, para $h_{a_{e}pr1}$ se utiliza la ecuación (4.10) y para $h_{a_{e}pr2}$ la ecuación (4.11).

$$h_{a_{p}r1} = \frac{a_{r} \times \left(\frac{M_{O_{2}} + 3.76M_{N_{2}}}{M_{bh}}\right) \times \left(h_{T_{ap}} - h_{T_{ap,ref}}\right) + \left(\frac{n_{\nu}M_{H_{2}O}}{M_{bh}}\right) (T_{ap} - T_{ref}) \times 1.8723}{A_{m}}$$
(4.10)
$$h_{a_{p}r2} = \frac{a_{r} \times \left(\frac{M_{O_{2}} + 3.76M_{N_{2}}}{M_{bh}}\right) \times \left(h_{T_{ap_{2}}} - h_{T_{ap,ref}}\right) + \left(\frac{n_{\nu}M_{H_{2}O}}{M_{bh}}\right) (T_{a_{p}r2} - T_{ref}) \times 1.8723}{A_{m}}$$
(4.11)

De estas dos últimas ecuaciones, todos los términos se han dado o calculado en el capítulo 3, excepto $h_{T_{ap}}$, $h_{T_{ap_2}}$ y $h_{T_{ap_ref}}$, las cuales son las entalpías de entrada, salida y referencia del sistema aire-gases de combustión en el precalentador respectivamente. Estas se calculan con la ecuación (2.92).

$$h_{T_{ap}} = 1003.79 \left(\frac{t_{ap}}{1000}\right) - 37.76 \left(\frac{t_{ap}}{1000}\right)^2 + 72 \left(\frac{t_{ap}}{1000}\right)^3 \left[\frac{kJ}{kg}\right]$$
(4.12)

$$h_{T_{ap_2}} = 1003.79 \left(\frac{t_{ap_2}}{1000}\right) - 37.76 \left(\frac{t_{ap_2}}{1000}\right)^2 + 72 \left(\frac{t_{ap_2}}{1000}\right)^3 \left[\frac{kJ}{kg}\right]$$
(4.13)

$$h_{T_{ap_ref}} = 1003.79 \left(\frac{t_{ap_ref}}{1000}\right) - 37.76 \left(\frac{t_{ap_ref}}{1000}\right)^2 + 72 \left(\frac{t_{ap_ref}}{1000}\right)^3 \left[\frac{kJ}{kg}\right]$$
(4.14)

Cabe resaltar que dichas temperaturas, para aplicar la ecuación (2.92), deben estar en grados Celsius.

Por último, para calcular los requerimientos energéticos en cada etapa en kJ/h se utilizan las siguientes ecuaciones:

$$\dot{Q}_{ec} = \dot{m}_{vapor} \left(h_{w_{ec2}} - h_{w_{ec1}} \right) \left[\frac{kJ}{h} \right]$$
(4.15)

$$\dot{Q}_{ev} = \dot{m}_{vapor} \left(h_{w_{ev2}} - h_{w_{ev1}} \right) \left[\frac{kJ}{h} \right]$$
(4.16)

$$\dot{Q}_{sb} = \dot{m}_{vapor} \left(h_{w_{sb2}} - h_{w_{sb1}} \right) \left[\frac{kJ}{h} \right]$$
(4.17)

$$\dot{Q}_{pr} = \dot{m}_{vapor} \left(h_{a_pr2} - h_{a_pr1} \right) \left[\frac{kJ}{h} \right]$$
(4.18)

4.3. Diseño de la cámara de combustión

4.3.1. Balance energético

Primero se asume un valor de emisividad de la llama de la cámara de combustión ε , al igual que un valor razonable de área de cámara de combustión S_{cc}^6 . Con estos datos se pasa a calcular la temperatura de cámara de combustión T_{CC2-j} utilizando un proceso iterativo, comenzando con la ecuación (4.21).

$$\varepsilon = 0.69^7 \tag{4.19}$$

$$S_{cc} = 5.29 \ m^2$$
 (4.20)

$$f(T_{CC2-j}) = T_{sc-j} \sum A_i \overline{x_1} + \frac{T_{CC2-j}^2}{2} \sum B_i \overline{x_1} + \frac{T_{CC2-j}^3}{3} \sum C_i \overline{x_1} + \frac{T_{CC2-j}^4}{4} \sum D_i \overline{x_1} + 5.67 \times 10^{-8} \frac{\varepsilon S_{cc} M_g}{\dot{m}_c G_m} (T_{CC2-j}^4 - T_p^4) - h_{g_{ad}} M_g \ [K]$$

$$(4.21)$$

⁶ El valor de S_{cc} debe generar un valor de temperatura de llama adiabática razonable de 1150°C a 1350°C y una temperatura de gases de salida de cámara de combustión de 900°C a 1000°C.

⁷ Valor de la emisión del combustible obtenido del apartado 2.2.4.1.

En esta ecuación los coeficientes A_i , B_i , C_i y D_i son los coeficientes de entalpía de los componentes de los gases de combustión, mostrados en la tabla 5. Además $T_p = T_{sat@P_d} + 50 K$. Derivando la ecuación (4.21) obtenemos:

$$f'(T_{CC2-j}) = \sum A_i \overline{x_1} + T_{CC2-j} \sum B_i \overline{x_1} + T_{CC2-j}^2 \sum C_i \overline{x_1} + T_{CC2-j}^3 \sum D_i \overline{x_1} + 22.68 \times 10^{-8} \frac{\varepsilon S_{cc} M_g}{\dot{m}_c G_m} T_{CC2-j}^3$$
(4.22)

Utilizando las ecuaciones (4.21) y (4.22) se puede aplicar el método iterativo de Newton-Raphson en la ecuación (4.23), el cual para el valor inicial de iteración se considera una temperatura de 1000 K para una rápida convergencia.

$$T_{CC2-j+1} = T_{sc-j} - \frac{f(T_{CC2-j})}{f'(T_{CC2-j})} [K]$$
(4.23)

Para simplificar el cálculo se computará el valor de una constante (*cte*) que será todos los términos que se mantienen constantes ya que no dependen de la temperatura a calcular, al igual que el término t_4 que se utilizará como factor en el método iterativo.

$$h_{g} = \frac{PCI + q_{c} - q_{rp} - q_{cz} - q_{ci} + \left(h_{T_{ap_{2}}} - h_{T_{ap_{ref}}}\right)}{G_{m}} \left[\frac{kJ}{kg}\right]$$
(4.24)

$$h_{g_{ad}} = h_g + h_{g_ref} \left[\frac{kJ}{kg}\right]$$
(4.25)

$$cte = -M_g \left(h_{g_{ad}} + \left(0.00567 \frac{\varepsilon S_{cc} T_p^{\ 4}}{\dot{m}_c G_m \times 100^4} \times 3600 \right) \right)$$
(4.26)

$$t_4 = D_{prom} + 0.00567 \left(\frac{\varepsilon S_{cc} M_g}{\dot{m}_c G_m \times 100^4}\right) \times 3600$$
(4.27)

Con estos valores, la ecuación (4.23) queda como:

$$T_{CC2-j+1} = T_{sc-j} - \frac{t_4 T_{cc2-j}^4 + C_{prom} T_{cc2-j}^3 + B_{prom} T_{cc2-j}^2 + A_{prom} T_{cc2-j} + cte}{4 \times t_4 T_{cc2-j}^3 + 3 \times C_{prom} T_{cc2-j}^2 + 2 \times B_{prom} T_{cc2-j} + A_{prom}} [K]$$
(4.28)

Una forma de resolver la ecuación es utilizar el comando "while" en Matlab estableciendo un error al cual no se debe superar. Teniendo calculada la T_{sc} , se puede hallar la entalpía de gases de combustión a la salida de la cámara de combustión h_{g_sc} con la ecuación (4.29).

$$h_{g_cc2} = \frac{D_{prom}T_{cc2}^{4} + C_{prom}T_{cc2}^{3} + B_{prom}T_{cc2}^{2} + A_{prom}T_{cc2}}{M_{g}} - h_{g_ref}$$
(4.29)

Se debe calcular el calor liberado durante la combustión en el hogar por kg de combustible H'_i con la ecuación (4.30).

$$H'_{i} = h_{g}G_{m} \left[\frac{kJ}{kg}\right]$$
(4.30)

Como se ha dicho en los anteriores capítulos, el valor de la temperatura de llama adiabática T_{ad} es esencial para el diseño. Para el cálculo de esta se realiza un proceso iterativo igual al de T_{cc2} . Para este caso se utilizará la contante "nro" para simplificar el cálculo. El valor inicial de cálculo será h_g .

$$nro = -M_g \left(h_{g_{ref}} + h_g \right) \tag{4.31}$$

$$T_{ad-j+1} = T_{ad-j} - \frac{D_{prom}T_{ad-j}^{4} + C_{prom}T_{ad-j}^{3} + B_{prom}T_{ad-j}^{2} + A_{prom}T_{ad-j} + nro}{4 \times D_{prom}T_{ad-j}^{3} + 3 \times C_{prom}T_{ad-j}^{2} + 2 \times B_{prom}T_{ad-j} + A_{prom}} [K]$$
(4.32)

Posteriormente se debe calcular el calor irradiado por la cámara de combustión \dot{Q}_r en kJ/h aplicando la ecuación (4.33), con el que se calcula el porcentaje de absorción del calor en la cámara de combustión con la ecuación (4.34).

$$\dot{Q}_r = 0.00567 \varepsilon S_{cc} \left[\left(\frac{T_{cc2}}{100} \right)^4 - \left(\frac{T_p}{100} \right)^4 \right] \times 3600 \ \left[\frac{kJ}{h} \right]$$
(4.33)

$$Q_{r\%} = \frac{Q_r}{\dot{m}_c H'_i} \times 100 \quad [\%]$$
(4.34)

4.3.2. Dimensionamiento cámara de combustión

El primer paso para el dimensionamiento de la cámara de combustión es hallar la temperatura media absoluta de los gases en esta, utilizando una media aritmética.

$$T_{cc} = \frac{T_{ad} + T_{cc2}}{2} \quad [K] \tag{4.35}$$

Luego se calcula el volumen de gases de combustión por kg de bagazo V_{g_cc} con la ecuación (4.36), donde el valor de P_{cc} se asume como 10 mmH_2O por debajo de la presión atmosférica para trabajos en calderas.

$$V_{g_cc} = G_{\nu} \frac{T_{cc} P^0}{T^0 P_{cc}} \ [m^3]$$
(4.36)

Con este valor calculado se halla el valor del flujo volumétrico de los gases de combustión en el hogar \dot{V}_{g_cc} en m^3/s .

$$\dot{V}_{g_cc} = \frac{V_{g_cc} \dot{m}_c}{3600} \left[\frac{m^3}{s}\right]$$
 (4.37)

Para este primer proceso iterativo desde la ecuación (4.38) a la (4.91) se asumirá un valor inicial de la velocidad de los gases en el hogar w_{g_cc} igual a 6.5 m/s^8 . A partir del método iterativo en Matlab con el comando "while" se remplazará este valor con el obtenido al final de cada iteración. Así se procede a calcular el área de sección transversal de la cámara de combustión A_{t_cc} con la ecuación (4.38). A partir de la segunda iteración w_{g_cc} toma el valor calculado con la ecuación (4.89) de la iteración anterior.

PrN

$$A_{t_cc} = \frac{\dot{V}_{g_cc}}{w_{g_cc}} \quad [m^2]$$

$$(4.38)$$

Se elige la longitud frontal l_f igual a 0.6 metros⁹, con la que se calcula la longitud transversal de la cámara con la ecuación.

$$l_t = \frac{A_{t_cc}}{l_f} \quad [m] \tag{4.39}$$

⁸ El valor asumido es obtenido de la tesis "Metodología de diseño de un generador de vapor acuotubular bagacero" (Andrade-Liviapoma, 2015). Sin embargo, aun así se utilice otro valor asumido, el valor de $w_{g_{cc}}$ converge al mismo resultado, donde se demuestra la convergencia de las ecuaciones de la metodología.

⁹ Se decidió trabajar con una sección transversal de la cámara de combustión cuadrada A_{t_cc} cuadrada donde $l_f \approx l_t$.

A continuación, se asumen algunas constantes como la fracción de espacio ocupado por los colectores en la pared superior e_c , la fracción de espacio ocupado por el quemador en la pared frontal e_q , la fracción de espacio ocupado por la ventana de paso de la pared posterior e_v y la emisividad de la llama en la ventana ε_v^{10} . Con estas se calcula la altura de la cámara de combustión l_h con la ecuación (4.44).

$$e_c = 0.2$$
 (4.40)

 $e_q = 0.3 \tag{4.41}$

$$e_v = 0.28$$
 (4.42)

$$\varepsilon_{\nu} = 0.2 \tag{4.43}$$

$$l_{h} = \frac{S_{cc} - (1 - e_{c})l_{f}l_{t}}{(1 - e_{q}) + 2l_{t} + (1 - e_{v})l_{f} + e_{v}l_{f}\left(\frac{\varepsilon_{v}}{\varepsilon}\right)} \quad [m]$$
(4.44)

Con el valor de e_v se calcula la altura de ventana a_v con la ecuación (4.45). Además, se eligen los valores del diámetro externo del tubo d_o , el espaciamiento entre centros s_t , el espesor de tubería x_p con el que se calcula el diámetro interno d_i y se halla la relación de diámetros rel_{dia} . El material elegido para los tubos es SA-178 Gr A (ver anexo 5).

$$a_{\nu} = e_{\nu}l_h \ [m] \tag{4.45}$$

$$d_0 = 0.038 \,[m] \tag{4.46}$$

$$x_p = 0.004 \ [m] \tag{4.47}$$

$$d_i = d_0 - 2x_p \ [m] \tag{4.48}$$

$$s_t = 0.104 \ [m]$$
 (4.49)

$$rel_{dia} = \frac{d_0}{d_i} \tag{4.50}$$

¹⁰ Valores de fracciones de espacio ocupado de e_c , e_q , e_v y ε_v obtenidos de la tesis "Metodología de diseño de un generador de vapor acuotubular bagacero" (Andrade-Liviapoma, 2015).

4.4. Diseño de superficies de intercambio de calor

4.4.1. Pantalla

Primero se debe calcular el área proyectada de la ventana de salida S_v con la ecuación (4.51), la cual servirá para la ecuación (4.52) en el cálculo de la radiación hacia la ventana de salida \dot{Q}_v , que a su vez con el fator de absorción de la pantalla E_{pt} hallado en la figura 29 se calcula el calor irradiado a la pantalla \dot{Q}_{pt_r} con la ecuación (4.54).

$$S_v = e_v l_f l_h \ [m^2] \tag{4.51}$$

$$\dot{Q}_{\nu} = 3.6 \times 5.67 \varepsilon_{\nu} S_{\nu} \left[\left(\frac{T_{cc2}}{100} \right)^4 - \left(\frac{T_p}{100} \right)^4 \right] \left[\frac{kJ}{h} \right]$$
(4.52)

$$E_{pt} = 0.46$$
 (4.53)

$$\dot{Q}_{pt_r} = E_{pt}\dot{Q}_{v} \left[\frac{kJ}{h}\right] \tag{4.54}$$

Este calor irradiado a la pantalla nos permite calcular el calor irradiado al sobrecalentador \dot{Q}_{sb_r} con la ecuación (4.55).

$$\dot{Q}_{sb_r} = \dot{Q}_{v} - \dot{Q}_{pt_r} \left[\frac{kJ}{h}\right]$$
(4.55)

Siguiendo la metodología es necesario el cálculo de temperaturas como la variación de temperatura media logarítmica Δt_{ml_pt} , las temperaturas media, de pared y película de los gases de combustión T_{g_ptm} , T_{g_ptp} y T_{g_ptf} respectivamente, y las temperaturas media y de pared del vapor T_{v_ptm} y T_{v_ptp} .

$$\Delta t_{ml_pt} = \frac{T_{g_pt1} - T_{g_pt2}}{\ln\left(\frac{T_{g_pt1} - T_{sat@P_d}}{T_{g_pt2} - T_{sat@P_d}}\right)} [K]$$
(4.56)

$$T_{v_ptm} = T_{sat@P_d} [K]$$
(4.57)

$$T_{g_{ptm}} = \frac{T_{g_{pt1}} - T_{g_{pt2}}}{\ln\left(\frac{T_{g_{pt1}}}{T_{g_{pt2}}}\right)} \quad [K]$$
(4.58)

$$T_{g_ptp} = T_{sat@P_d} \ [K] \tag{4.59}$$

$$T_{v_ptp} = T_{sat@P_d} [K]$$
(4.60)

$$T_{g_ptf} = \frac{T_{g_ptm} + T_{g_ptp}}{2} \quad [K]$$
(4.61)

Donde la temperatura de entrada en la pantalla T_{g_pt1} es igual a T_{cc2} y para la primera iteración la temperatura de salida de la pantalla T_{g_pt2} se considera 50 K menor a T_{g_pt1} de la misma forma que T_{g_ptp} y T_{v_ptp} se asumen iguales a $_{sat@P_d}$.

Posteriormente se calcula el número de tubos n_t , los cuales permiten hallar el área de paso de los gases de combustión A_{pg_pt} y la velocidad másica de los gases de combustión G_g . Cabe mencionar que n_t es un número natural, por lo que se debe aproximar en caso necesario.

$$n_{t} = \frac{l_{f} - (s_{t} - d_{o})}{s_{t}}$$
(4.62)

$$A_{pg_pt} = e_v l_h (l_f - n_t) \ [m^2]$$
(4.63)

$$G_g = \frac{\dot{m}_g}{3600A_{pg_pt}} \left[\frac{kg}{m^2s}\right]$$
(4.64)

Ahora se hallan los valores de las características físicas del fluido y el coeficiente convectivo vistos en los apartados 2.2.3.1 y 2.2.4.2. La viscosidad dinámica se trabaja con las temperaturas en grados Celsius y m es igual a la tasa de humedad de los gases de combustión en porcentaje. La viscosidad dinámica se encuentra en [kg/m s].

$$\mu_g = \frac{16.861 - 0.1106m + (43.449 + 0.111m)\frac{t_{g_ptf}}{1000} - (11.19 - 0.0985m)\left(\frac{t_{g_ptf}}{1000}\right)^2}{10^6} \left[\frac{kg}{ms}\right]$$
(4.65)

$$Re_g = \frac{G_g d_o}{\mu_g} \tag{4.66}$$

$$K_g = 4.752 + 0.0204m + (5.553 + 0.0294m) \frac{t_{g_ptf}}{1000} - (1.614 - 0.0479m) \left(\frac{t_{g_ptf}}{1000}\right)^2$$
(4.67)

$$f_a = 0.92$$
 (4.68)

$$f_d = 0.7$$
 (4.69)

$$\alpha_{c_g} = K_g f_d f_a \frac{G_g^{0.61}}{d_o^{0.39}} \left[\frac{W}{m^2 \circ C} \right]$$
(4.70)

Luego se calculan los valores de $p, \beta y \frac{x_r}{d_o}$ que son constantes necesarias para hallar la constante K_r de la tabla, que a su vez con este se calcula el coeficiente de radiación tubular de los gases hacia los tubos α_{r_g} con la ecuación (4.75) y sumado este último con α_{c_g} se halla el coeficiente de transferencia de calor total de los gases α_g . Cabe mencionar que la relación $\frac{x_r}{d_o}$ se encuentra en la figura 30.

$$p = \frac{[CO_2] + [H_2O]}{G_v}$$
(4.71)
$$\beta = \frac{[H_2O]}{[CO_1]}$$
(4.72)

$$\frac{x_r}{d_o} \approx 9 \tag{4.73}$$

$$K_r = 1.1$$
 (4.74)

$$\begin{aligned} \alpha_{r_g} &= \frac{8.985}{\Delta t_{ml_pt}} \left[\left(\frac{\Delta t_{ml_pt} + t_{g_ptp}}{100} \right)^{3.2} - \left(\frac{t_{g_ptp}}{100} \right)^{3.2} \left(\frac{\Delta t_{ml_pt} + t_{g_ptp}}{100} \right)^{0.65} \right] \\ &+ \frac{9.861}{\Delta t_{ml_pt}} \left[\left(\frac{\Delta t_{ml_pt} + t_{g_ptp}}{100} \right)^{2.652} - \left(\frac{t_{g_ptp}}{100} \right)^{2.565} \right] \left[\frac{W}{m^2 \circ C} \right] \\ \alpha_g &= \alpha_{c_g} + \alpha_{r_g} \left[\frac{W}{m^2 \circ C} \right] \end{aligned}$$
(4.75)

Para finalizar con los coeficientes de transmisión de calor, se calcula el coeficiente de transferencia de calor global de los gases de combustión utilizando la ecuación (4.80). Para esta ecuación es necesario el uso de los coeficientes de resistencia térmica de los gases de combustión, vapor y condensado R_{t_g} , R_{t_v} y R_{t_c} respectivamente en $m^{2\circ}C/W$. Además, como se dijo en el apartado 2.2.3.1 se toma el valor del coeficiente de transferencia de mezcla de vapor agua α_{a-v} igual a 12000 W/m^2K .

$$R_{t_g} = 0.000352 \left[\frac{m^{2} \circ C}{W} \right]$$
(4.77)

$$R_{t_v} = 0.000264 \left[\frac{m^{2} \circ C}{W} \right]$$
(4.78)

$$R_{t_c} = 0.000176 \left[\frac{m^{2\circ}C}{W} \right]$$
(4.79)

$$U_o = \frac{1}{\frac{1}{\alpha_{a-v}} rel_{dia} + R_{t_v} rel_{dia} + \frac{d_o}{2k} \ln(rel_{dia}) + R_{t_g} + \frac{1}{\alpha_g}} \left[\frac{W}{m^2 \circ C} \right]$$
(4.80)

Terminado el cálculo de los coeficientes, se da paso al cálculo de calor por convección y radiación hacia los tubos \dot{Q}_{pt_g} en Watts, lo cual hace falta primero calcular la superficie de transferencia de calor de la pantalla S_{pt} en m^2 dada por la ecuación (4.81).

$$S_{pt} = \pi e_v l_f n_t d_o \ [m^2] \tag{4.81}$$

$$S_{pt} = \pi e_v l_f n_t d_o \ [m^2]$$

$$\dot{Q}_{pt_g} = S_{pt} U_o \Delta t_{ml_pt} \ [W]$$

$$(4.81)$$

$$(4.82)$$

Con este calor hallado se puede calcular la entalpía de salida de la pantalla h_{g_pt2} con la ecuación (4.83) en kJ/kg. Cabe resaltar que la entalpía de entrada a la pantalla h_{g_pt1} es igual a la entalpía de salida de la cámara de combustión.

$$h_{g_pt2} = h_{g_pt1} - \left(\frac{3.6\dot{Q}_{pt_g}}{\dot{m}_g}\right) \left[\frac{kJ}{kg}\right]$$
(4.83)

Para hallar la temperatura de salida de la pantalla de los gases de combustión T_{g_pt2} es necesario aplicar el método iterativo antes explicado.

$$T_{g_{pt2}} = h_{g_{pt2}} - \frac{D_{prom}h_{g_{pt2}}^{4} + C_{prom}h_{g_{pt2}}^{3} + B_{prom}h_{g_{pt2}}^{2} + A_{prom}h_{g_{pt2}} + nro}{4 \times D_{prom}h_{g_{pt2}}^{3} + 3 \times C_{prom}h_{g_{pt2}}^{2} + 2 \times B_{prom}h_{g_{pt2}} + A_{prom}} [K]$$
(4.84)

Después de esto se puede calcular el calor transmitido total a la pantalla \dot{Q}_{pt} en kJ/h con la ecuación (4.85).

$$\dot{Q}_{pt} = \dot{Q}_{pt_r} + \dot{Q}_{pt_g} \left[\frac{kJ}{h}\right]$$
(4.85)

Finalmente, con la presión de entrada a la pantalla de los gases de combustión P_{g_pt1} se calcula la densidad de estos ρ_{g_pt} , su velocidad corregida w_g , su caída de presión a través de la pantalla ΔP_{g_pt} y la presión de salida de los gases de combustión P_{g_pt2} . Para este cálculo se considera el factor de fricción del gas f = 0.222, donde $f = f_a f_d$. Además, ρ_{g_0} es igual a la densidad de los gases de combustión en condiciones normales.

$$P_{g_{p_{1}}} = P_{cc} \ [mmH_{2}O] \tag{4.86}$$

$$\rho_{g_0} = \frac{G_m}{G_v} \left[\frac{kg}{m^3}\right] \tag{4.87}$$

$$\rho_{g_pt} = \rho_{g_0} \left(\frac{P_{g_pt1} T^0}{P^0 T_{g_ptm}} \right) \left[\frac{kg}{m^3} \right]$$

$$(4.88)$$

$$w_g = \frac{G_g}{\rho_{g_pt}} \quad \left[\frac{m}{s}\right] \tag{4.89}$$

$$\Delta P_{g_{p_{t}}} = 0.102 f \frac{\rho_{g_{p_{t}}} w_{g}^{2}}{2} \quad [mmH_{2}O]$$
(4.90)

$$P_{g_pt2} = P_{g_pt1} - \Delta P_{g_{pt}} \quad [mmH_2O]$$

$$(4.91)$$

Esta es la primera iteración, por lo cual para acercarse al valor real se deben hacer más, en donde en las ecuaciones que se han supuesto datos iniciales se sustituyen por los calculados en la iteración anterior, hasta que se cumpla una condición establecida. Para este caso, se asume que con diez iteraciones se alcanza un valor casi exacto.

4.4.2. Sobrecalentador

Para el cálculo del dimensionamiento del sobrecalentador, se inicia con el cálculo del flujo de calor absorbido por las paredes paralelas de tubos con la ecuación (4.92).

$$\dot{Q}_{plsb} = \dot{Q}_{plec} = \frac{0.025 \dot{Q}_{ev}}{3} \left[\frac{kJ}{h}\right]$$
 (4.92)

Se tiene por concepto que la temperatura de entrada de los gases de combustión en el sobrecalentador T_{g_sb1} es igual a T_{g_pt2} y la entalpía de entrada de los gases de combustión en el sobrecalentador h_{g_sb1} es igual a h_{g_pt2} . Además, la potencia térmica suministrada por los gases de combustión al sobrecalentador \dot{Q}_{g_sb} viene dada por la ecuación (4.96) y el calor de ventana \dot{Q}_v por la ecuación (4.97). Con estos datos hallados se puede calcular la entalpía de salida de los gases de combustión en el sobrecalentador h_{g_sb2} con la ecuación (4.98). Vale mencionar que \dot{Q}_{sb_r} es la tasa de calor irradiado al sobrecalentador calculado en la ecuación (4.95).

$$T_{g_sb1} = T_{g_pt2} \quad [K]$$

$$(4.93)$$

$$h_{g_sb1} = h_{g_pt2} \quad \left[\frac{kJ}{kg}\right] \tag{4.94}$$

$$\dot{Q}_{sb_r} = \dot{Q}_{v} \left(1 - E_{pt}\right) \left[\frac{kJ}{h}\right]$$
(4.95)

$$\dot{Q}_{g_sb} = \dot{Q}_{sb} - \dot{Q}_{sbr} \left[\frac{kJ}{h}\right] \tag{4.96}$$

$$\dot{Q}_{\nu} = 0.00567 \varepsilon_{\nu} l_f a_{\nu} \left[\left(\frac{T_{cc2}}{100} \right)^4 - \left(\frac{T_{sat@P_d}}{100} \right)^4 \right] \quad \left[\frac{kJ}{h} \right]$$
(4.97)

$$h_{g_sb2} = h_{g_sb1} - \frac{\dot{Q}_{g_sb} + \dot{Q}_{plsb} - \dot{Q}_{v}(1 - E_{pt})}{\dot{m}_{g}} \left[\frac{kJ}{kg}\right]$$
(4.98)

Para el cálculo de la temperatura de los gases de combustión a la salida del sobrecalentador T_{g_sb2} se utiliza el método iterativo antes expuesto.

$$T_{g_sb2} = h_{g_sb2} - \frac{D_{prom}h_{g_sb2}{}^{4} + C_{prom}h_{g_sb2}{}^{3} + B_{prom}h_{g_sb2}{}^{2} + A_{prom}h_{g_sb2} + nro}{4 \times D_{prom}h_{g_sb2}{}^{3} + 3 \times C_{prom}h_{g_sb2}{}^{2} + 2 \times B_{prom}h_{g_sb2} + A_{prom}}[K]$$
(4.99)

Luego en el perfil de temperaturas se tiene: la temperatura de entrada y salida del vapor en el sobrecalentador T_{v_sb1} y T_{v_sb2} respectivamente, la diferencia de temperatura media logarítmica en el sobrecalentador Δt_{ml_sb} , la temperatura media de gases y vapor en el sobrecalentador T_{g_sbm} y T_{v_sbm} , la temperatura de pared del lado de los gases y vapor en el sobrecalentador T_{g_sbp} y T_{v_sbp} , y la temperatura de película de los gases en el sobrecalentador T_{g_sbf} .

$$T_{\nu_sb1} = T_{sat@P_d} [K] \tag{4.100}$$

$$T_{\nu_sb2} = T_{\nu g} \ [K] \tag{4.101}$$

$$\Delta t_{ml_sb} = \frac{\left(T_{g_sb1} - T_{v_{sb2}}\right) - \left(T_{g_sb2} - T_{v_sb1}\right)}{\ln\left(\frac{T_{g_sb1} - T_{v_{sb2}}}{T_{g_sb2} - T_{v_sb1}}\right)} \quad [K]$$
(4.102)

$$T_{v_sbm} = \frac{T_{v_sb1} - T_{v_sb2}}{\ln\left(\frac{T_{v_sb1}}{T_{v_sb2}}\right)} [K]$$
(4.103)

$$T_{g_sbm} = \frac{T_{g_sb1} - T_{g_sb2}}{\ln\left(\frac{T_{g_sb1}}{T_{g_sb2}}\right)} [K]$$
(4.104)

$$T_{g_sbp} = T_{g_sbm} - \frac{U_{o_sb} (T_{g_sbm} - T_{v_sbm})}{\alpha_{g_sb}} [K]$$
(4.105)

$$T_{v_sbp} = T_{v_sbm} + \frac{U_{o_sb}rel_{dia_sb}(T_{g_sbm} - T_{v_sbm})}{\alpha_{v_sb}} [K]$$
(4.106)

$$T_{g_sbf} = \frac{T_{g_sbm} + T_{g_sbp}}{2} [K]$$
(4.107)

Es importante mencionar que los valores iniciales que se asumen en la primera iteración para T_{g_sbp} y T_{v_sbp} son iguales a T_{v_sbm} , luego en las siguientes iteraciones se utilizan las ecuaciones (4.105) y (4.106), cuyos componentes serán explicados más adelante.

5

Pasado el anterior cálculo, se eligen los valores del diámetro externo del tubo del sobrecalentador d_{o_sb} , el espaciamiento transversal entre centros de estos tubos s_{t_sb} , el espaciamiento longitudinal entre centros de estos tubos s_{l_sb} , el espesor de tubería x_{p_sb} con el que se calcula el diámetro interno d_{i_sb} y se halla la relación de diámetros rel_{dia_sb} . Otro dato necesario es el área transversal interna del tubo del sobrecalentador a_{ti_sb} .

$$d_{o\ sb} = 0.03175\ [m] \tag{4.108}$$

$$x_{p_sb} = 0.00381 \ [m] \tag{4.109}$$

$$d_{i_sb} = d_{o_sb} - 2x_{p_{sb}} \ [m] \tag{4.110}$$

$$s_{t_sb} = 0.0381 \ [m] \tag{4.111}$$

$$s_{l\ sb} = 0.1016\ [m] \tag{4.112}$$

$$rel_{dia_sb} = \frac{d_{o_sb}}{d_{i_sb}} \tag{4.113}$$

$$A_{ti_sb} = \frac{\pi}{4} d_{i_sb}^2 \ [m^2] \tag{4.114}$$

El material elegido para los tubos es SA-178 Gr A (ver anexo 5). La densidad del vapor en el sobrecalentador ρ_{v_sb} para los cálculos es igual a la de tablas A6 del libro Termodinámica (Cengel & Boles, 2012) del anexo 3 con temperatura igual a T_{v_sbm} y una presión igual a $(P_{vg} + P_d)/2$. El caudal del vapor en el sobrecalentador \dot{V}_{v_sb} se calcula con la ecuación (4.116), dato necesario para hallar la velocidad del vapor en el sobrecalentador $w_{v_{sb}}$ con la ecuación (4.117). Se debe mencionar que para la primera iteración se asume un valor de w_{v_sb} igual a 16.5 m/s.

$$\rho_{\nu_sb} = 3.55 \ \frac{kg}{m^3} \tag{4.115}$$

$$\dot{V}_{v_sb} = \frac{\dot{m}_v}{\rho_{v_sb}} \left[\frac{m^3}{s}\right]$$
(4.116)

$$w_{v_sb} = \frac{V_{v_sb}}{3600n_{t_sb}A_{ti_sb}} \left[\frac{m}{s}\right]$$
(4.117)

El número de tubos en el sobrecalentador n_{t_sb} se calcula con la ecuación (4.118). Con este dato se halla posteriormente el ancho del sobrecalentador l_{t_sb} y se recalcula la velocidad del vapor en el sobrecalentador w_{v_sb} .

$$n_{t_sb} = \frac{\dot{m}_{v}}{3600\rho_{v_sb}w_{v_sb}A_{ti_sb}}$$
(4.118)

$$l_{t_sb} = s_{t_sb} (n_{t_sb} + 1) - d_{o_sb} \ [m]$$
(4.119)

Posteriormente se pasa al cálculo de los coeficientes de transmisión de calor. Primero el factor K_s el cual pertenece al vapor sobrecalentado donde P_{vg} se utiliza en bar y T_{v_sbm} en grados Celsius. También está el coeficiente convectivo del vapor sobrecalentado en el interior del tubo $\alpha_{c_v_sb}$. Con estos datos se puede calcular el área de paso de los gases de combustión A_{pg_sb} y su velocidad másica G_{g_sb} .

$$K_{s} = 5.069 - 0.0529P_{vg} + \left(4.467 + 0.169P_{vg}\right) \left[\left(\frac{t_{v_{sbm}}}{1000}\right) - \left(1.268 + 0.143P_{vg}\right) \left(\frac{t_{v_{sbm}}}{1000}\right)^{2} \right]$$
(4.120)

$$\alpha_{c_{v_{sb}}} = K_s \left(\frac{\left(\rho_{v_{sb}} W_{v_{sb}} \right)^{0.75}}{d_{i_{sb}}} \right) \left[\frac{W}{m^2 \circ C} \right]$$
(4.121)

$$A_{pg_sb} = e_{v}l_{h}(l_{f} - 0.975n_{t_sb}d_{o_sb}) \ [m^{2}]$$
(4.122)

$$G_{g_sb} = \frac{\dot{m}_g}{3600A_{pg_sb}} \left[\frac{kg}{m^2s}\right]$$
(4.123)

Pasando a los gases de combustión se puede hallar su factor K_{g_sb} con la ecuación (4.124) donde "m" es la tasa de humedad de los gases de combustión; se definen los coeficientes f_{a_sb} y f_{d_sb} y se halla la viscosidad dinámica de los gases de combustión en el sobrecalentador μ_{g_sb} y su número adimensional de Reynolds Re_{g_sb} . Con estos datos se procede a hallar el coeficiente convectivo de los gases de combustión en el sobrecalentador $\alpha_{c_g_sb}$. Como dato T_{g_sbf} se utiliza en °C.

$$K_{g_sb} = 4.752 + 0.0204m + (5.553 + 0.0294m) \left(\frac{t_{g_sbf}}{1000}\right) - (1.614 - 0.0479m) \left(\frac{t_{g_sbf}}{1000}\right)^2$$
(4.124)

$$f_{a_sb} = 1.05 \tag{4.125}$$

 $f_{d_sb} = 1$ (4.126)

$$\mu_{g_sb} = \left[16.861 - 0.11m + (43.449 - 0.111m) \left(\frac{t_{g_{sbf}}}{1000} \right) - (11.19 + 0.0985m) \left(\frac{t_{g_{sbf}}}{1000} \right)^2 \right] \times 10^{-6} \left[\frac{kg}{m s} \right]$$
(4.127)

$$Re_{g_sb} = \frac{G_{g_sb}d_{o_sb}}{\mu_{g_sb}}$$
(4.128)

$$\alpha_{c_{g_{sb}}} = K_{g_{sb}} \left(\frac{G_{g_{sb}}^{0.61}}{d_{o_{sb}}^{0.39}} \right) f_{a_{sb}} f_{d_{sb}} \left[\frac{W}{m^2 \circ C} \right]$$
(4.129)

La variación de temperatura del gas de combustión en el sobrecalentador quedaría expresada en la ecuación (4.130).

$$\Delta T_{g_sbp} = T_{g_sbm} - T_{g_sbp} \ [K] \tag{4.130}$$

Mediante el apartado 1.2.4.2 se puede concluir lo siguiente en cuanto a los factores x_r/d_o , p_{sb} , β_{sb} y $px_{f_{sb}}$ hallando con la tabla 4 el factor K_r .

$$\begin{pmatrix} x_r \\ d_o \end{pmatrix}_{sb} = 9.5$$

$$p_{sb} = \frac{[CO_2] + [H_2O]}{G_v}$$

$$(4.131)$$

$$(4.132)$$

$$\beta_{sb} = \frac{[H_2 0]}{[C 0_2]} \tag{4.133}$$

$$px_{f_{sb}} = p_{sb} \left(\frac{x_r}{d_o}\right)_{sb} \times d_{o_{sb}}$$
(4.134)

$$K_r = 0.785$$
 (4.135)

Por lo tanto, el coeficiente que proviene de la radiación intertubular de los gases de combustión hacia los tubos $\alpha_{r_g,sb}$ viene dado en la ecuación (4.136), y el coeficiente de transferencia de calor total $\alpha_{g,sb}$ con la ecuación (4.137); con los cuales se puede hallar el coeficiente global de transferencia de calor $U_{o,sb}$ y con él, el calor irradiado en el sobrecalentador $\dot{Q}_{i,sb}$, la superficie de transferencia de calor necesaria en el sobrecalentador S_{sb} y el número de pasos de los tubos en el sobrecalentador $n_{p,sb}$. De igual forma que $n_{t,sb}$, $n_{p,sb}$ debe ser un número exacto y de ser el caso se debe aproximar.

$$\begin{aligned} \alpha_{r_g_sb} &= \left\{ \left(\frac{8.985}{\Delta T_{g_sbp}} \right) \left[\left(\frac{\Delta T_{g_sbp} + t_{g_sbp}}{100} \right)^{3.2} - \left(\frac{T_{g_{sbp}}}{100} \right) \left(\frac{\Delta T_{g_{sbp}} + t_{g_{sbp}}}{100} \right)^{0.65} \right. \\ &+ \left(\frac{9.861}{\Delta T_{g_{sbp}}} \right) \left(\frac{\Delta T_{g_{sbp}} + t_{g_{sbp}}}{100} \right)^{2.565} - \left(\frac{t_{g_{sbp}}}{100} \right)^{2.565} \right] \right\} K_r \left[\frac{W}{m^2 \circ C} \right] \end{aligned}$$
(4.136)

$$\alpha_{g_sb} = \alpha_{c_g_sb} + \alpha_{r_g_sb} \left[\frac{W}{m^2 \circ C}\right]$$
(4.137)

$$U_{o_sb} = \frac{1}{\frac{1}{\alpha_{c_v_sb}} rel_{dia_sb} + R_{t_v} rel_{dia_sb} + \frac{d_o}{2k} \ln(rel_{dia_sb}) + R_{t_g} + \frac{1}{\alpha_{g_sb}}} \left[\frac{W}{m^2 \circ C}\right]$$
(4.138)

$$\dot{Q}_{i_{sb}} = \left(1 - E_{pt}\right) \dot{Q}_{v} \left[\frac{kJ}{h}\right]$$
(4.139)

$$S_{sb} = \frac{\dot{Q}_{sb} - \dot{Q}_{i_{sb}}}{3.6U_{o_sb}\Delta t_{ml_sb}} \ [m^2]$$
(4.140)

$$n_{p_sb} = \left(\frac{S_{sb}}{\pi d_{o_{sb}} n_{t_sb}}\right) - s_{l_{sb}} + \frac{\left(\frac{\pi s_{l_sb}}{2}\right)}{0.975e_{v}l_{h} - s_{l_{sb}} + \frac{\pi s_{l_sb}}{2}}$$
(4.141)

Habiendo realizado dichos pasos, se procede a calcular la longitud del sobrecalentador $l_{l_{sb}}$ y, además, se hallan los factores $f_{a_{sb}}$ y $f_{d_{sb}}$. Es importante aclarar que no son los mismos que se calcularon anteriormente, sino que estos se utilizan en el cálculo de la caída de presión del apartado 2.3.1.3, para esto es necesario el valor de la presión a la entrada de los gases en el sobrecalentador $P_{g_{sb1}}$ y la presión media de los gases $P_{g_{sbm}}$ (para la primera iteración se asume igual a $P_{g_{sb1}}$). Con estos, se calcula la densidad media de los gases $\rho_{g_{sb}}$ y la velocidad media de los gases en el sobrecalentador $w_{g_{sb}}$ para calcular así la caída de presión de los gases en el sobrecalentador $w_{g_{sb}}$ y así finalmente la presión a la salida de los gases en el sobrecalentador $P_{g_{sb2}}$.

$$l_{l_{sb}} = n_{p_{sb}} d_{o_{sb}} + (s_{l_{sb}} - d_{o_{sb}})(n_{p_{sb}} + 1) \ [m]$$
(4.142)

$$f_{a_sb} = 0.34 \tag{4.143}$$

$$f_{d_sb} = 1.05 \tag{4.144}$$

$$P_{g_sb1} = P_{g_pt2} \ [mmH_20] \tag{4.145}$$

$$P_{g_sbm_j} = P_{g_sbm_j-1} - 0.5\Delta p_{g_sb_j-1} \ [mmH_20]$$
(4.146)

$$\rho_{g_sb} = \rho_{g_0} \left(\frac{P_{g_sbm} T^0}{P^0 T_{g_sbm}} \right) \left[\frac{kg}{m^3} \right]$$
(4.147)

$$w_{g_sb} = \frac{G_{g_sb}}{\rho_{g_sb}} \quad \left[\frac{m}{s}\right] \tag{4.148}$$

$$\Delta P_{g_sb} = 0.102 f_{a_sb} f_{d_sb} n_{p_sb} \rho_{g_sb} \frac{w_{g_sb}^2}{2} \quad [mmH_2O]$$
(4.149)

$$P_{g_sb2} = P_{g_sb1} - \Delta P_{g_sb} \quad [mmH_2O]$$
(4.150)

También se puede calcular la longitud del tubo L_{t_sb} y se deja expresados los factores de caída de presión del vapor para hallar su variación de presión del vapor en el sobrecalentador ΔP_{v_sb} .

$$L_{t_sb} = \frac{S_{sb}}{\pi n_{t_sb} d_{o_{sb}}} [m]$$
(4.151)

$$\zeta_{e/s_sb} = 1.5 \tag{4.152}$$

$$\zeta_{cd_sb} = 0.29 \tag{4.153}$$

$$\lambda_{sb} = 0.02 \tag{4.154}$$

$$\Delta P_{v_sb} = 0.001 \left(\zeta_{e/s_sb} + (n_{p_sb} - 1) \zeta_{cd_sb} + \lambda_{sb} L_{t_sb} \right) \rho_{g_sb} \frac{w_{g_sb}^2}{2} \ [kPa]$$
(4.155)

4.4.3. Evaporador secundario

Para el cálculo del dimensionamiento del evaporador se comienza hallando de la figura 44 el valor de la relación de flujo másico de mezcla de vapor agua y de vapor a la salida del evaporador R_{ev} . También se debe calcular el flujo de calor convectivo en el evaporador por los gases de combustión \dot{Q}_{c_evg} para el cual es necesario el calor convectivo en la pared de agua \dot{Q}_{pa} y el calor de vapor \dot{Q}_{v_ev} . Además, está el flujo de calor a la pantalla de tubos en paralelo \dot{Q}_{plev_g} .

$$R_{ev} = 24$$
 (4.156)

$$\dot{Q}_{pa} = 0.96 \left(\dot{Q}_r - \dot{Q}_v \right) \left[\frac{kJ}{h} \right] \tag{4.157}$$

$$\dot{Q}_{v_ev} = \dot{m_v} \left(h_{v_ev2} - h_{w_ec2} \right) \left[\frac{kJ}{h} \right]$$
 (4.158)

$$\dot{Q}_{c_evg} = \dot{Q}_{v_ev} - \dot{Q}_{pa} - \dot{Q}_{pt} - \dot{Q}_{plsb} - \dot{Q}_{plec} \left[\frac{kJ}{h}\right]$$
 (4.159)

$$\dot{Q}_{plev_g} = \frac{Q_{plsb_g} + Q_{plec}}{2} \left[\frac{kJ}{h}\right]$$
(4.160)

Con estos datos el flujo de calor total por los gases de combustión en el evaporador \dot{Q}_{ev_g} queda:

$$\dot{Q}_{ev_g} = \dot{Q}_{c_evg} - \dot{Q}_{plev_g} \left[\frac{kJ}{h}\right]$$
(4.161)

Calculando los flujos de vapor \dot{m}_{v_ev} y de mezcla agua vapor \dot{m}_{m_ev} en el evaporador tenemos:

$$\dot{m}_{v_ev} = \frac{\dot{Q}_{c_evg}}{h_{v_ev2} - h_{w_ev1}} \left[\frac{kg}{h}\right]$$
(4.162)

$$\dot{m}_{m_ev} = R_{ev} \times \dot{m}_{v_ev} \left[\frac{kg}{h}\right]$$
(4.163)

Figura 44. Valores mínimos de R para generadores de vapor de circulación natural Fuente: Annaratone (2008)

Como dato del apartado anterior se obtiene la temperatura de los gases de combustión en la entrada del evaporador $T_{g_ev_1}$ y las entalpías de entrada y salida del evaporador $h_{g_ev_1}$ y $h_{g_ev_2}$ respectivamente.

$$T_{g_{ev1}} = T_{g_{sb2}} [K] (4.164)$$

$$h_{g_ev1} = h_{g_sb2} \left[\frac{kJ}{kg} \right]$$
(4.165)

$$h_{g_ev2} = h_{g_ev1} - \frac{\dot{Q}_{evg}}{\dot{m}_g} \left[\frac{kJ}{kg}\right]$$
(4.166)

Como se ha venido realizando anteriormente, para la temperatura de salida de los gases de combustión del evaporador $T_{g_ev_2}$ se utilizará el método iterativo.

$$T_{g_{ev2}} = h_{g_{ev2}} - \frac{D_{prm}h_{g_{ev2}}^{4} + C_{prom}h_{g_{ev2}}^{3} + B_{prom}h_{g_{ev2}}^{2} + A_{prom}h_{g_{ev2}} + nro}{4 \times D_{prom}h_{g_{ev2}}^{3} + 3 \times C_{prom}h_{g_{ev2}}^{2} + 2 \times B_{prom}h_{g_{ev2}} + A_{prom}} [K]$$
(4.167)

En cuanto al vapor, ya se ha calculado la temperatura anteriormente, la cual se mantiene en $T_{sat@P_d}$ cómo se ha explicado.

Luego en el perfil de temperaturas se tiene: la diferencia de temperatura media logarítmica en el evaporador Δt_{ml_ev} , la temperatura media de gases y vapor en el evaporador T_{g_evm} y T_{v_evm} , la temperatura de pared del lado de los gases y vapor en el evaporador T_{g_evp} y T_{v_evp} , y la temperatura de película de los gases en el evaporador T_{g_evf} .

$$\Delta t_{ml_ev} = \frac{\left(T_{g_ev1} - T_{v_{ev2}}\right) - \left(T_{g_ev2} - T_{v_ev1}\right)}{\ln\left(\frac{T_{g_ev1} - T_{v_{ev2}}}{T_{g_ev2} - T_{v_ev1}}\right)} [K]$$
(4.168)

$$T_{v_evm} = T_{sat@P_d} [K]$$
(4.169)

$$T_{g_{evm}} = \frac{T_{g_{ev1}} - T_{g_{ev2}}}{\ln\left(\frac{T_{g_{ev1}}}{T_{g_{ev2}}}\right)} \quad [K]$$
(4.170)

$$T_{g_{evp}} = T_{g_{evm}} - \frac{U_{o_{ev}} (T_{g_{evm}} - T_{v_{evm}})}{\alpha_{g_{ev}}} [K]$$
(4.171)

$$T_{v_{evp}} = T_{v_{evm}} + \frac{U_{o_{ev}} rel_{dia_{ev}} (T_{g_{evm}} - T_{v_{evm}})}{\alpha_{v_{ev}}} \quad [K]$$
(4.172)

$$T_{g_{evf}} = \frac{T_{g_{evm}} + T_{g_{evp}}}{2} [K]$$
(4.173)

Es importante mencionar que los valores iniciales que se asumen en la primera iteración para T_{g_evp} y T_{v_evp} son iguales a $T_{sat@P_d}$, luego en las siguientes iteraciones se utilizan las ecuaciones (4.171) y (4.172), cuyos componentes serán explicados más adelante.

Pasado el anterior cálculo, se eligen los valores del diámetro externo del tubo del evaporador d_{o_ev} , el espaciamiento transversal entre centros de estos tubos s_{t_ev} , el espaciamiento longitudinal entre centros de estos tubos s_{l_ev} , el espesor de tubería x_{p_ev} con el que se calcula el diámetro interno d_{i_ev} y se halla la relación de diámetros rel_{dia_ev} . Otro dato necesario es el área transversal interna del tubo del evaporador a_{ti_ev} . El material elegido para los tubos es SA-178 Gr A (ver Anexo 5).

$$d_{o_ev} = 0.0508 \ [m]$$
 (4.174)

$$x_{p_ev} = 0.003 \ [m]$$
 (4.175)

$$d_{i_{ev}} = d_{o_{ev}} - 2x_{p_{ev}} \ [m] \tag{4.176}$$

$$s_{t_ev} = 0.1021 [m]$$
 (4.177)

$$s_{l_{ev}} = 0.0762 \ [m]$$
 (4.178)

$$rel_{dia_ev} = \frac{d_{o_ev}}{d_{i_ev}}$$
(4.179)

$$A_{ti_ev} = \frac{\pi}{4} d_{i_ev}^2 \ [m^2] \tag{4.180}$$

La densidad del agua en el evaporador ρ_{w_ev} se halla con la ecuación (4.181) donde T_{v_evm} se utiliza en grados Celsius. El caudal de la mezcla en el evaporador \dot{V}_{m_ev} se calcula con la ecuación (4.184), pero primero es necesario asumir una la velocidad de la mezcla inicial en el evaporador $w_{m_ev_1}$ igual a 0.26 m/s para así hallar una densidad media de la mezcla ρ_{m_ev} .

Cabe mencionar que la densidad del vapor ρ_{v_ev} se toma de las tablas A-4 del libro Termodinámica (Cengel & Boles, 2012) de agua saturada (ver anexo 2) a la temperatura $T_{sat@P_d}$ y la inversa de R_{ev} es igual al título de vapor.

$$\rho_{w_ev} = 1006.68 - 20.07 \left(\frac{T_{v_{evm}}}{100}\right) - 25.15 \left(\frac{T_{v_{evm}}}{100}\right)^2 \left[\frac{kg}{m^3}\right]$$
(4.181)

$$\rho_{\nu_{ev}} = 6.4 \, \frac{kg}{m^3} \tag{4.182}$$

$$\rho_{m_ev} = \rho_{w_ev} \times \left(\frac{R_{ev}^2}{\frac{\rho_{w_ev}}{\rho_{v_ev}} - 1}\right) \times \ln \left(\frac{R_{ev}^2 + \frac{\rho_{w_ev}}{\rho_{v_ev}} - 1}{R_{ev}^2}\right) \left[\frac{kg}{m^3}\right]$$
(4.183)

$$\dot{V}_{m_ev} = \frac{\dot{m}_{m_ev}}{\rho_{m_ev}} \left[\frac{m^3}{s} \right]$$
(4.184)

El número de tubos en el evaporador $n_{t_{ev}}$ se calcula con la ecuación (4.185), con este se asume un número de filas (en este caso 3 filas) para así calcular un número de tubos en paralelo $n_{tt_{ev}}$ y así el ancho del evaporador $l_{t_{ev}}$. Pasado este paso, se calcula la verdadera velocidad de la mezcla en el evaporador $w_{m_{ev}}$ y se establece el ancho del canal de paso de los gases de combustión $l_{c_{ev}}$ igual a 0.35 metros.

$$n_{t_{ev}} = \frac{\dot{m}_{m_{ev}}}{3600\rho_{m_{ev}}w_{m_{ev_{1}}}A_{ti_{ev}}}$$
(4.185)

$$n_{tt_ev} = \frac{n_{t_ev}}{3} \tag{4.186}$$

$$l_{t_ev} = s_{t_ev} (n_{t_ev} + 1) - d_{o_{ev}} [m]$$
(4.187)

$$w_{m_ev} = \frac{V_{v_ev}}{3600n_{tt_ev}A_{ti_ev}} \left[\frac{m}{s}\right]$$
(4.188)

Con estos datos se pasa a calcular el área de paso de los gases de combustión A_{pg_ev} y la velocidad másica de los mismos G_{g_ev} en el evaporador.

$$A_{pg_ev} = l_{c_ev} (l_f - 0.95 n_{tt_ev} d_{o_ev}) \ [m^2]$$
(4.189)

$$G_{g_sb} = \frac{\dot{m}_g}{3600A_{pg_ev}} \left[\frac{kg}{m^2 s}\right]$$
(4.190)

Pasando a los gases de combustión se puede hallar su factor K_{g_ev} con la ecuación (4.191) donde "m" es la tasa de humedad de los gases de combustión; se definen los coeficientes f_{a_ev} y f_{d_ev} y se halla la viscosidad dinámica de los gases de combustión en el evaporador μ_{g_ev} y su número adimensional de Reynolds Re_{g_ev} . Con estos datos se procede a hallar el coeficiente convectivo de los gases de combustión en el evaporador $\alpha_{c_g_ev}$. Como dato T_{g_evf} se utiliza en °C.

$$K_{g_{ev}} = 4.752 + 0.0204m + (5.553 + 0.0294m) \left(\frac{t_{g_{evf}}}{1000}\right) - (1.614 - 0.0479m) \left(\frac{t_{g_{evf}}}{1000}\right)^2$$
(4.191)

$$f_{a_sb} = 0.85$$
 (4.192)

$$f_{d_sb} = 1 \tag{4.193}$$

$$\mu_{g_ev} = \left[16.861 - 0.11m + (43.449 - 0.111m) \left(\frac{t_{g_evf}}{1000} \right) - (11.19 + 0.0985m) \left(\frac{t_{g_evf}}{1000} \right)^2 \right] \times 10^{-6} \left[\frac{kg}{m \, s} \right]$$

$$G_{g_ev} d_{o_ev}$$
(4.194)

$$Re_{g_ev} = \frac{g_ev = 0_ev}{\mu_{g_ev}}$$

$$(4.195)$$

$$\alpha_{c_{g_{ev}}} = K_{g_{ev}} \left(\frac{G_{g_{ev}}}{d_{o_{ev}}}^{0.61} \right) f_{a_{ev}} f_{d_{ev}} \left[\frac{W}{m^2 K} \right]$$
(4.196)

La variación de temperatura del gas de combustión en el evaporador quedaría expresada en la ecuación (4.197).

$$\Delta T_{g_evp} = T_{g_evm} - T_{g_{evp}} \quad [K] \tag{4.197}$$

Mediante el apartado 1.2.4.2 se puede concluir lo siguiente en cuanto a los factores x_r/d_o , p_{sb} , β_{ev} y $px_{f_{ev}}$ hallando con la tabla el factor K_{r_ev} .

$$\left(\frac{x_r}{d_o}\right)_{ev} = 5 \tag{4.198}$$

$$p_{ev} = \frac{[CO_2] + [H_2O]}{G_v} \tag{4.199}$$

$$\beta_{ev} = \frac{[H_2 0]}{[C 0_2]} \tag{4.200}$$

$$px_{f_{ev}} = p_{ev} \left(\frac{x_r}{d_o}\right)_{ev} \times d_{o_{ev}}$$
(4.201)

$$K_{r_ev} = 0.515$$
 (4.202)

Por lo tanto, el coeficiente que proviene de la radiación intertubular de los gases de combustión hacia los tubos $\alpha_{r_g_ev}$ viene dado en la ecuación (4.203), y el coeficiente de transferencia de calor total α_{g_ev} con la ecuación (4.204); con los cuales se puede hallar el coeficiente global de transferencia de calor U_{o_ev} y con él, la superficie de transferencia de calor necesaria en el evaporador S_{ev} .

$$\begin{aligned} \alpha_{r_g_ev} &= \left\{ \left(\frac{8.985}{\Delta T_{g_evp}} \right) \left[\left(\frac{\Delta T_{g_evp} + t_{g_evp}}{100} \right)^{3.2} - \left(\frac{t_{g_{evp}}}{100} \right) \left(\frac{\Delta T_{g_{evp}} + t_{g_{evp}}}{100} \right)^{0.65} \right. \\ &+ \left(\frac{9.861}{\Delta T_{g_{evp}}} \right) \left(\frac{\Delta T_{g_{evp}} + t_{evp}}{100} \right)^{2.565} - \left(\frac{t_{g_{evp}}}{100} \right)^{2.565} \right] \right\} K_{r_ev} \left[\frac{W}{m^2 K} \right] \\ \alpha_{g_ev} &= \alpha_{c_g_ev} + \alpha_{r_g_ev} \left[\frac{W}{m^2 K} \right] \end{aligned}$$
(4.204)

$$\alpha_{c_v_ev} = 12000 \, \frac{W}{m^2 K} \tag{4.205}$$

$$U_{o_ev} = \frac{1}{\frac{1}{\alpha_{c_v_ev}} rel_{dia_ev} + R_{t_v} rel_{dia_ev} + \frac{d_{o_ev}}{2k} \ln(rel_{dia_ev}) + R_{t_g} + \frac{1}{\alpha_{g_ev}}}$$
(4.206)

$$S_{ev} = \frac{Q_{ev_g}}{3.6U_{o_ev}\Delta t_{ml_ev}} \ [m^2]$$
(4.207)

Habiendo realizado dichos pasos, se procede a calcular la longitud media de los tubos del evaporador L_{t_ev} y, además, se hallan los factores f_{a_ev} y f_{d_ev} . Es importante aclarar que no son los mismos que se calcularon anteriormente, sino que estos se utilizan en el cálculo de la caída de presión del apartado 2.3.1.3, para esto es necesario el valor de la presión a la entrada de los gases en el evaporador P_{g_ev1} y la presión media de los gases P_{g_evm} (para la primera iteración se asume igual a P_{g_ev1}). Con estos, se calcula la densidad media de los gases ρ_{g_ev} y la velocidad media de los gases en el evaporador w_{g_ev} , tomando como número de filas que

atraviesa el fluido n_{f_ev} para calcular así la caída de presión de los gases en el evaporador Δp_{g_ev} y así finalmente la presión a la salida de los gases en el evaporador P_{g_ev2} .

$$L_{t_ev} = \frac{S_{ev} - 0.225\pi l_f l_h}{2\pi n_{tt_ev} d_{o_{ev}}} \quad [m]$$
(4.208)

$$f_{a_{ev}} = 0.25 \tag{4.209}$$

$$f_{d_ev} = 1 \tag{4.210}$$

$$P_{g_{ev1}} = P_{g_{ev2}} \ [mmH_20] \tag{4.211}$$

$$P_{g_{evm_j}} = P_{g_{evm_j-1}} - 0.5\Delta p_{g_{ev_j-1}} \ [mmH_20]$$
(4.212)

$$\rho_{g_ev} = \rho_{g_0} \left(\frac{P_{g_evm} T^0}{P^0 T_{g_evm}} \right) \left[\frac{kg}{m^3} \right]$$
(4.213)

$$w_{g_ev} = \frac{G_{g_ev}}{\rho_{g_ev}} \left[\frac{m}{s}\right]$$
(4.214)

$$n_{f_ev} = 4 \ filas \tag{4.215}$$

$$\Delta P_{g_ev} = 0.102 f_{a_ev} f_{d_ev} n_{f_ev} \rho_{g_ev} \frac{w_{g_ev}^2}{2} \quad [mmH_20]$$
(4.216)

$$P_{g_{ev2}} = P_{g_{ev1}} - \Delta P_{g_{ev}} \ [mmH_20] \tag{4.217}$$

4.4.4. Economizador

Como dato del apartado anterior obtenemos la temperatura de los gases de combustión en la entrada del economizador T_{g_ec1} y las entalpías de entrada y salida del economizador h_{g_ec1} y h_{g_ec2} respectivamente.

RFN

$$T_{g_ec1} = T_{g_ev2} \ [K] \tag{4.218}$$

$$h_{g_ec1} = h_{g_ev2} \ [K] \tag{4.219}$$

$$h_{g_ec2} = h_{g_ec1} - \frac{\dot{Q}_{ec} + \dot{Q}_{plec_g}}{\dot{m}_g} \left[\frac{kJ}{kg}\right]$$
(4.220)

Como se ha venido realizando anteriormente, para la temperatura de salida de los gases de combustión del economizador $T_{g_{ev2}}$ se utilizará el método iterativo.

$$T_{g_{ec2}} = h_{g_{ec2}} - \frac{D_{prom}h_{g_{ec2}}^{4} + C_{prom}h_{g_{ec2}}^{3} + B_{prom}h_{g_{ec2}}^{2} + A_{prom}h_{g_{ec2}} + nro}{4 \times D_{prom}h_{g_{ec2}}^{3} + 3 \times C_{prom}h_{g_{ec2}}^{2} + 2 \times B_{prom}h_{g_{ec2}} + A_{prom}} [K]$$
(4.221)

En cuanto al agua, ya se ha calculado las temperaturas anteriormente. Luego en el perfil de temperaturas se tiene: la diferencia de temperatura media logarítmica en el economizador $\Delta t_{ml_{ec}}$, la temperatura media de gases y agua en el economizador $T_{g_{ecm}}$ y $T_{w_{ecm}}$, la temperatura de pared del lado de los gases y agua en el economizador $T_{g_{ecp}}$ y $T_{w_{evp}}$, y la temperatura de película de los gases en el economizador $T_{g_{ecf}}$.

$$\Delta t_{ml_ec} = \frac{\left(T_{g_ec1} - T_{w_ec2}\right) - \left(T_{g_ec2} - T_{w_ec1}\right)}{\ln\left(\frac{T_{g_ec1} - T_{w_ec2}}{T_{g_ec2} - T_{v_ec1}}\right)} [K]$$
(4.222)

$$T_{w_ecm} = \frac{T_{w_ec1} - T_{w_ec2}}{\ln\left(\frac{T_{w_ec1}}{T_{w_ec2}}\right)} [K]$$
(4.223)

$$T_{g_ecm} = \frac{I_{g_ec1} - I_{g_ec2}}{\ln\left(\frac{T_{g_ec1}}{T_{g_ec2}}\right)} [K]$$
(4.224)

$$T_{g_ecp} = T_{g_ecm} - \frac{U_{o_{ec}}(T_{g_{ecm}} - T_{w_{ecm}})}{\alpha_{g_{ec}}} [K]$$

$$(4.225)$$

$$T_{w_ecp} = T_{w_ecm} + \frac{U_{o_ec} rel_{dia_ec} (T_{g_ecm} - T_{w_ecm})}{\alpha_{w_ec}} [K]$$
(4.226)

$$T_{g_ecf} = \frac{T_{g_ecm} + T_{g_ecp}}{2} \ [K]$$
(4.227)

Es importante mencionar que los valores iniciales que se asumen en la primera iteración para T_{g_ecp} y T_{w_ecp} son iguales a T_{w_ecm} , luego en las siguientes iteraciones se utilizan las ecuaciones (4.225) y (4.226), cuyos componentes serán explicados más adelante. Pasado el anterior cálculo, se eligen los valores del diámetro externo del tubo del evaporador d_{o_ec} , el espaciamiento transversal entre centros de estos tubos s_{t_ec} , el espaciamiento longitudinal entre centros de estos tubos s_{l_ec} , el espesor de tubería x_{p_ec} con el que se calcula el diámetro interno d_{i_ec} y se halla la relación de diámetros rel_{dia_ec} . Otro dato necesario es el área transversal interna del tubo del economizador a_{ti_ec} . El material elegido para los tubos es SA-178 Gr A (ver anexo 5).

$$d_{o_ec} = 0.0508 \ [m] \tag{4.228}$$

$$x_{p_ec} = 0.00305 \ [m] \tag{4.229}$$

$$d_{i_ec} = d_{o_ec} - 2x_{p_{ec}} \ [m]$$
(4.230)

$$s_{t_ec} = 0.0762 \ [m]$$
 (4.231)

$$s_{l_ec} = 0.0762 \ [m]$$
 (4.232)

$$rel_{dia_ec} = \frac{d_{o_ec}}{d_{i_ec}}$$

$$(4.233)$$

$$A_{ti\ ec} = \frac{\pi}{d_{i\ ec}} a_{i_ec}^2 [m^2]$$

$$(4.234)$$

La densidad del agua en el economizador ρ_{w_ev} se halla con la ecuación (4.235) donde T_{w_ecm} se utiliza en grados Celsius y el caudal del agua en el economizador \dot{V}_{w_ev} se calcula con la ecuación (4.236).

$$\rho_{w_ec} = 1006.68 - 20.07 \left(\frac{t_{w_{ecm}}}{100}\right) - 25.15 \left(\frac{t_{w_{ecm}}}{100}\right)^2 \left[\frac{kg}{m^3}\right]$$
(4.235)

$$\dot{V}_{w_ec} = \frac{\dot{m}_v}{\rho_{w_ec}} \left[\frac{m}{s}\right] \tag{4.236}$$

Para el número de tubos en el economizador n_{t_ec} se utiliza la ecuación (4.237), pero primero es necesario asumir una la velocidad del agua inicial en el economizador $w_{w_ec_1}$ igual a 0.18 m/s para así luego, calcular el ancho del economizador l_{t_ec} . Pasado este paso, se calcula la verdadera velocidad del agua en el economizador w_{w_ec} y se establece el ancho del canal de paso de los gases de combustión $l_{c_{ec}}$ igual a 0.30 metros para hallar el área de los gases de combustión $A_{pg_{ec}}$ y su velocidad másica en el economizador $G_{g_{ec}}$.

$$n_{t_ec} = \frac{\dot{m}_{v}}{3600\rho_{w_ec}w_{w_ec_1}a_{ti_ec}}$$
(4.237)

$$l_{t_ec} = s_{t_ec} (n_{t_ec} + 1) - d_{o_{ec}} [m]$$
(4.238)

$$w_{w_{ec}} = \frac{\dot{V}_{w_{ec}}}{3600n_{t_{ec}}A_{ti_{ec}}} \left[\frac{m}{s}\right]$$
(4.239)

$$A_{pg_ec} = l_{t_ec} \times \left(l_f - 0.95 n_{t_ec} d_{o_ec} \right) \ [m^2]$$
(4.240)

$$G_{g_ec} = \frac{\dot{m}_g}{3600A_{pg_ec}} \left[\frac{kg}{m^2s}\right]$$
(4.241)

En la parte de coeficientes térmicos tenemos al coeficiente del agua α_{w_ec} que es puramente convectivo, para el cual se debe hallar primero el factor K_{w_ec} . Como dato P_{vg} se utiliza en bar y T_{w_ecm} se utiliza en °C.

$$K_{w_ec} = 5.86 + 0.018 \frac{P_{vg}}{100} + \left(9.41 - 0.63 \frac{P_{vg}}{100}\right) \frac{t_{w_ecm}}{100} - \left(1.542 - 0.3 \frac{P_{vg}}{100}\right) \left(\frac{t_{w_ecm}}{100}\right)^2 \qquad (4.242)$$

$$\alpha_{w_ec} = K_{w_ec} \frac{\rho_{w_ec}}{d_{i_ec}} \frac{0.8}{100} \left[\frac{W}{m^2 K}\right] \qquad (4.243)$$

Pasando a los gases de combustión se puede hallar su factor $K_{g_{ec}}$ con la ecuación (4.244) donde "m" es la tasa de humedad de los gases de combustión; se definen los coeficientes $f_{a_{ec}}$ y $f_{d_{ec}}$ y se halla la viscosidad dinámica de los gases de combustión en el economizador $\mu_{g_{ec}}$ y su número adimensional de Reynolds $Re_{g_{ec}}$. Como dato $T_{g_{ecf}}$ se utiliza en °C.

$$K_{g_ec} = 4.752 + 0.0204m + (5.553 + 0.0294m) \left(\frac{t_{g_ecf}}{1000}\right) - (1.614 - 0.0479m) \left(\frac{t_{g_ecf}}{1000}\right)^2$$

$$f_{a_sb} = 1$$
(4.245)

$$f_{d_sb} = 1$$
 (4.246)

$$\mu_{g_ec} = \left[16.861 - 0.11m + (43.449 - 0.111m) \left(\frac{t_{g_ecf}}{1000} \right) - (11.19 + 0.0985m) \left(\frac{t_{g_ecf}}{1000} \right)^2 \right] \times 10^{-6} \left[\frac{kg}{m \, s} \right]$$
(4.247)

$$Re_{g_ec} = \frac{G_{g_ec}d_{o_ec}}{\mu_{g_ec}}$$
(4.248)

$$\alpha_{c_g_ec} = K_{g_ec} \left(\frac{G_{g_{ec}}}{d_{o_{ec}}}^{0.61} \right) f_{a_{ec}} f_{d_{ec}} \left[\frac{W}{m^2 K} \right]$$
(4.249)

La variación de temperatura del gas de combustión en el economizador quedaría expresada en la ecuación (4.250).

$$\Delta T_{g_ecp} = T_{g_ecm} - T_{g_{ecp}} [K]$$
(4.250)

Mediante el apartado 1.2.4.2 se puede concluir lo siguiente en cuanto a los factores x_r/d_o , p_{sb} , β_{ec} y $px_{f_{ec}}$ hallando con la tabla el factor K_{r_ec} .

$$\left(\frac{x_r}{d_o}\right)_{ec} = 5 \tag{4.251}$$

$$p_{ec} = \frac{[C O_2] + [H_2 O]}{G_v} \tag{4.252}$$

$$\beta_{ec} = \frac{[H_2 0]}{[C 0_2]}$$
(4.253)

$$px_{f_{ec}} = p_{sb} \left(\frac{x_r}{d_o}\right)_{ec} \times d_{o_{ec}}$$
(4.254)

$$K_{r_{ec}} = 0.515$$
 (4.255)

Por lo tanto, el coeficiente que proviene de la radiación intertubular de los gases de combustión hacia los tubos $\alpha_{r_g_ec}$ viene dado en la ecuación (4.256), y el coeficiente de transferencia de calor total α_{g_ec} con la ecuación (4.257); con los cuales se puede hallar el coeficiente global de transferencia de calor U_{o_ec} y con él, la superficie de transferencia de calor necesaria en el evaporador S_{ec} , el número de pasos de los tubos en el evaporador n_{p_ec} . De igual forma que n_{t_ev} , n_{p_ev} debe ser un número exacto y de ser el caso se debe aproximar.

$$\begin{aligned} \alpha_{r_g_ec} &= \left\{ \left(\frac{8.985}{\Delta T_{g_ecp}} \right) \left[\left(\frac{\Delta T_{g_ecp} + t_{g_ecp}}{100} \right)^{3.2} - \left(\frac{t_{g_{ecp}}}{100} \right) \left(\frac{\Delta T_{g_{ecp}} + t_{g_{ecp}}}{100} \right)^{0.65} \right. \\ &+ \left(\frac{9.861}{\Delta T_{g_{ecp}}} \right) \left(\frac{\Delta T_{g_{ecp}} + t_{g_{ecp}}}{100} \right)^{2.565} - \left(\frac{t_{g_{ecp}}}{100} \right)^{2.565} \right] \right\} K_{r_ec} \left[\frac{W}{m^2 K} \right] \end{aligned}$$
(4.256)

$$\alpha_{g_ec} = \alpha_{c_g_ec} + \alpha_{r_g_ec} \left[\frac{W}{m^2 K}\right]$$
(4.257)

$$U_{o_ec} = \frac{1}{\frac{1}{\alpha_{w_ec}} rel_{dia_ec} + R_{t_c} rel_{dia_ec} + \frac{d_{o_{ec}}}{2k} \ln(rel_{dia_ec}) + R_{t_g} + \frac{1}{\alpha_{g_ec}}} \left[\frac{W}{m^2 K}\right]$$
(4.258)

$$S_{ec} = \frac{\dot{Q}_{ec}}{3.6U_{o_ec}\Delta t_{ml_ec}} \ [m^2]$$
(4.259)

$$n_{p_ec} = \frac{\frac{S_{ec}}{\pi d_{o_ec} n_{t_ec}} - s_{l_{ec}} - \frac{\pi s_{l_{ec}}}{2}}{0.975 l_{c_ec} - s_{l_{ec}} - \frac{\pi s_{l_{ec}}}{2}}$$
(4.260)

Habiendo realizado dichos pasos, se procede a calcular la longitud total del tubo del economizador L_{t_ec} y a partir de la segunda iteración la profundidad total del economizador l_{l_ec} , además, se hallan los factores f_{a_ev} y f_{d_ev} . Es importante aclarar que no son los mismos que se calcularon anteriormente, sino que estos se utilizan en el cálculo de la caída de presión del apartado 2.3.1.3, para esto es necesario el valor de la presión a la entrada de los gases en el economizador P_{g_ec1} y la presión media de los gases P_{g_ecm} (para la primera iteración se asume igual a P_{g_ec1}). Con estos, se calcula la densidad media de los gases ρ_{g_ec} y la velocidad media de los gases en el economizador W_{g_ec} , para calcular así la caída de presión de los gases en el economizador ΔP_{g_ec} y así finalmente la presión a la salida de los gases en el economizador P_{g_ec2} .

$$L_{t_ec} = \frac{S_{ec}}{\pi d_{o_ec} n_{t_ec}} \ [m]$$
(4.261)

$$l_{l_{ec}} = n_{p_{ec}} d_{o_{ec}} + (s_{l_{ec}} - d_{o_{ec}})(n_{p_{ec}} + 1) \ [m]$$
(4.262)

$$f_{a_ec} = 0.45 \tag{4.263}$$

$$f_{d_ec} = 1$$
 (4.264)

$$P_{g_{ec1}} = P_{g_{ev2}} [mmH_20]$$
(4.265)

$$P_{g_ecm_j} = P_{g_ecm_j-1} - 0.5\Delta p_{g_ec_j-1} \ [mmH_2O]$$
(4.266)

$$\rho_{g_ec} = \rho_{g_0} \left(\frac{P_{g_ecm} T^0}{P^0 T_{g_ecm}} \right) \left[\frac{kg}{m^3} \right]$$
(4.267)

$$w_{g_ec} = \frac{G_{g_ec}}{\rho_{g_ec}} \left[\frac{m}{s}\right]$$
(4.268)

$$\Delta P_{g_{ec}} = 0.102 f_{a_{ec}} f_{d_{ec}} n_{p_{ec}} \rho_{g_{ec}} \frac{w_{g_{ec}}^2}{2} \ [mmH_20]$$
(4.269)

$$P_{g_{ec2}} = P_{g_{ec1}} - \Delta P_{g_{ec}} \ [mmH_20] \tag{4.270}$$

4.4.5. Precalentador

Como dato del apartado anterior se obtiene la temperatura de los gases de combustión en la entrada del precalentador T_{g_pr1} y las entalpías de entrada y salida del precalentador h_{g_pr1} y h_{g_pr2} respectivamente.

~5°S>

$$T_{g_{pr1}} = T_{g_{ec2}} [K]$$
(4.271)

$$h_{g_pr1} = h_{g_ec2} \left[\frac{kJ}{kg} \right]$$
(4.272)

$$h_{g_pr2} = h_{g_pr1} - \frac{\dot{Q}_{pr}}{\dot{m}_g} \left[\frac{kJ}{kg}\right]$$
(4.273)

Como se ha venido realizando anteriormente, para la temperatura de salida de los gases de combustión del precalentador T_{g_pr2} se utilizará el método iterativo.

$$T_{g_{pr2}} = h_{g_{pr2}} - \frac{D_{prom}h_{g_{pr2}}^{4} + C_{prom}h_{g_{pr2}}^{3} + B_{prom}h_{g_{pr2}}^{2} + A_{prom}h_{g_{pr2}} + nro}{4 \times D_{prom}h_{g_{pr2}}^{3} + 3 \times C_{prom}h_{g_{pr2}}^{2} + 2 \times B_{prom}h_{g_{pr2}} + A_{prom}} [K]$$
(4.274)

En cuanto al aire, ya se han calculado las temperaturas anteriormente. Luego en el perfil de temperaturas se tiene: la diferencia de temperatura media logarítmica en el precalentador Δt_{ml_pr} , la temperatura media de gases y aire en el precalentador T_{g_prm} y T_{a_prm} , la temperatura de pared del lado de los gases y aire en el precalentador T_{g_prp} y T_{a_prp} , y las temperaturas de película de los gases y el aire en el precalentador T_{g_prf} y T_{a_prf} .

$$\Delta t_{ml_pr} = \frac{\left(T_{g_pr1} - T_{a_pr2}\right) - \left(T_{g_pr2} - T_{a_pr1}\right)}{\ln\left(\frac{T_{g_pr1} - T_{a_pr2}}{T_{g_pr2} - T_{a_pr1}}\right)} \quad [K]$$
(4.275)

$$T_{a_prm} = \frac{T_{a_pr1} - T_{a_pr2}}{\ln\left(\frac{T_{a_pr1}}{T_{a_pr2}}\right)} \ [K]$$
(4.276)

$$T_{g_prm} = \frac{T_{g_pr1} - T_{g_pr2}}{\ln\left(\frac{T_{g_pr1}}{T_{g_pr2}}\right)} \ [K]$$
(4.277)

$$T_{g_prp} = T_{g_prm} - \frac{U_{o_{pr}} \left(T_{g_{prm}} - T_{a_{prm}} \right)}{\alpha_{g_{pr}}} \quad [K]$$

$$(4.278)$$

$$T_{a_prp} = T_{a_prm} + \frac{U_{o_pr}rel_{dia_pr}(T_{g_prm} - T_{a_prm})}{\alpha_{a_pr}} [K]$$
(4.279)

$$T_{g_{_}prf} = \frac{T_{g_{_}prm} + T_{g_{_}prp}}{2} \ [K]$$
(4.280)

$$T_{a_prf} = \frac{T_{a_prm} + T_{a_prp}}{2} [K]$$
(4.281)

Es importante mencionar que los valores iniciales que se asumen en la primera iteración para T_{g_prp} y T_{a_prp} son iguales a la media aritmética de T_{g_prm} y T_{a_prm} , luego en las siguientes iteraciones se utilizan la ecuaciones (4.278) y (4.279), cuyos componentes serán explicados más adelante.

Pasado el anterior cálculo, se eligen los valores del diámetro externo del tubo del precalentador d_{o_pr} , el espaciamiento transversal entre centros de estos tubos s_{t_pr} , el espaciamiento longitudinal entre centros de estos tubos s_{l_pr} , el espesor de tubería x_{p_pr} con el que se calcula el diámetro interno d_{i_pr} y se halla la relación de diámetros rel_{dia_pr} . Otro dato necesario es el área transversal interna del tubo del precalentador A_{ti_pr} . El material elegido para los tubos es SA-178 Gr A (ver anexo 5).

$$d_{o_pr} = 0.0159 \ [m] = \frac{5}{8} \ [in] \tag{4.282}$$

$$x_{p_pr} = 0.0022 \ m \tag{4.283}$$

$$d_{i_pr} = d_{o_pr} - 2x_{p_pr}$$
(4.284)

$$s_{t_pr} = 0.0222 \ [m] = \frac{7}{8} \ [in]$$
 (4.285)

$$s_{l_pr} = 0.0222 \ [m] = \frac{7}{8} \ [in]$$
 (4.286)

$$rel_{dia_pr} = \frac{d_{o_pr}}{d_{i_pr}}$$
(4.287)

$$A_{ti_pr} = \frac{\pi}{4} d_{i_pr}^{2} [m^{2}]$$
(4.288)

Es necesario calcular el valor de la presión a la entrada de los gases en el precalentador P_{g_pr1} y la presión media de los gases P_{g_prm} (para la primera iteración se asume igual a P_{g_pr1}). Con estos, se calcula la densidad media de los gases ρ_{g_pr} y se asume una velocidad media de los gases en el precalentador w_{g_pr} , para hallar así el caudal de los gases \dot{V}_{g_pr} , el número de tubos n_{t_pr} (de los cuales se escoge el número de columnas n_{c_pr}) y el ancho del precalentador l_{t_pr} . Con el n_{c_pr} se halla el número de filas n_{f_pr} , hallando también la profundidad total l_{l_pr} , el número total de tubos corregido n_{tt_pr} (con el número de filas y columnas redondeado), el número de pasos n_{p_pr} y la velocidad del gas ya corregida w_{g_pr} .

$$P_{g_{pr1}} = P_{g_{ec2}} \ [mmH_20] \tag{4.289}$$

$$P_{g_prm_j} = P_{g_prm_j-1} - 0.5\Delta p_{g_pr_j-1} \ [mmH_20]$$
(4.290)

$$\rho_{g_pr} = \rho_{g_0} \left(\frac{P_{g_prm} T^0}{P^0 T_{g_prm}} \right) \left[\frac{kg}{m^3} \right]$$
(4.291)

$$w_{g_pr_1} = 15.5 \ \frac{m}{s} \tag{4.292}$$

$$\dot{V}_{g_pr} = \frac{\dot{m}_{g_pr}}{\rho_{g_pr}} \left[\frac{m^3}{s}\right]$$
(4.293)

$$n_{t_pr} = \frac{m_g}{3600\rho_{g_pr}w_{g_pr_1}A_{ti_pr}}$$
(4.294)

$$n_{c_pr} = 25 \ columnas \tag{4.295}$$

$$l_{t_pr} = s_{t_pr} (n_{t_pr} + 1) - d_{o_{pr}} [m]$$
(4.296)

$$n_{f_pr} = \frac{n_{t_pr}}{n_{c_pr}} \tag{4.297}$$

$$l_{l_pr} = s_{l_ec} (n_{f_pr} + 1) - d_{o_{pr}} [m]$$
(4.298)

$$n_{tt_pr} = n_{c_pr} \times n_{f_pr} \tag{4.299}$$

$$n_{p_pr} = 1 \ paso \tag{4.300}$$

$$w_{g_pr} = \frac{\dot{V}_{g_pr}}{3600 \frac{n_{tt_pr}}{n_{p_pr}} \times a_{ti_pr}} \left[\frac{m}{s}\right]$$
(4.301)

Con los datos anteriormente hallados se procede a calcular el área de paso de los gases A_{pa_pr} (para la primera iteración asumir un valor de 0.5 m^2), la velocidad másica de los gases de combustión y del aire en el precalentador G_{g_pr} y G_{a_pr} respectivamente. El valor del flujo másico del aire \dot{m}_a se puede calcular con la ecuación (4.304).

$$A_{pa_pr} = l_{h_pr} (l_f - n_{c_pr} \times d_{o_pr}) [m^2]$$
(4.302)

$$G_{g_pr} = w_{g_pr} \times \rho_{g_pr} \left[\frac{kg}{m^2 s}\right]$$
(4.303)

$$\dot{m}_a = A_m \times \dot{m}_c \, \left[\frac{kg}{h}\right] \tag{4.304}$$

$$G_{a_pr} = \frac{\dot{m}_a}{3600A_{pa_pr}} \left[\frac{kg}{m^2s}\right]$$
(4.305)

Pasando a la transmisión de calor, se puede hallar el factor K_{g_pr} con la ecuación (4.306) donde "m" es la tasa de humedad de los gases de combustión, se halla la viscosidad dinámica de los gases de combustión en el precalentador μ_{g_pr} y su número adimensional de Reynolds Re_{g_pr} además del coeficiente convectivo de los gases de combustión $\alpha_{c_g_pr}$. Como dato T_{g_prf} se utiliza en °C.

$$K_{g_pr} = 2.96 + 0.0169m + (2.449 + 0.0119m) \left(\frac{t_{g_prf}}{1000}\right) - (0.866 - 0.0172m) \left(\frac{t_{g_prf}}{1000}\right)^2$$

$$\mu_{g_pr} = \left[16.861 - 0.11m + (43.449 - 0.111m) \left(\frac{t_{g_prf}}{1000}\right)\right]$$
(4.306)

$$= \left[16.861 - 0.11m + (43.449 - 0.111m) \left(\frac{g_{_}p_{\uparrow}}{1000} \right) - (11.19 + 0.0985m) \left(\frac{t_{g_}p_{\uparrow}f}{1000} \right)^2 \right] \times 10^{-6} \left[\frac{W}{m^2 K} \right]$$

$$(4.307)$$

$$Re_{g_pr} = \frac{G_{g_pr}d_{i_pr}}{\mu_{g_pr}}$$
(4.308)

$$\alpha_{c_g_pr} = K_{g_pr} \left(\frac{G_{g_{pr}}^{0.8}}{d_{i_{pr}}^{0.2}} \right) \left[\frac{W}{m^2 K} \right]$$
(4.309)

La variación de temperatura del gas de combustión en el precalentador quedaría expresada en la ecuación (4.310).

$$\Delta T_{g_prp} = T_{g_prm} - T_{g_{prp}} [K]$$
(4.310)

Mediante el apartado 1.2.4.2 se puede concluir lo siguiente en cuanto a los factores x_r/d_o , p_{sb} , β_{pr} y $px_{f_{pr}}$ hallando con la tabla 4 el factor K_{r_pr} .

$$\left(\frac{x_r}{d_o}\right)_{pr} = 0.9\tag{4.311}$$

$$p_{pr} = \frac{[CO_2] + [H_2O]}{G_v}$$
(4.312)

$$\beta_{pr} = \frac{[H_2 O]}{[CO_2]} \tag{4.313}$$

$$px_{f_{pr}} = p_{sb} \left(\frac{x_r}{d_o}\right)_{pr} \times d_{i_{pr}}$$
(4.314)

$$K_{r_pr} = 0.2$$
 (4.315)

Por lo tanto, el coeficiente que proviene de la radiación intertubular de los gases de combustión hacia los tubos $\alpha_{r_g_pr}$ viene dado en la ecuación (4.316), y el coeficiente de transferencia de calor total α_{g_pr} con la ecuación (4.317).

$$\begin{aligned} \alpha_{r_g_pr} &= \left\{ \left(\frac{8.985}{\Delta T_{g_prp}} \right) \left[\left(\frac{\Delta T_{g_prp} + t_{g_prp}}{100} \right)^{3.2} - \left(\frac{t_{g_{prp}}}{100} \right) \left(\frac{\Delta T_{g_{prp}} + t_{g_{prp}}}{100} \right)^{0.65} + \left(\frac{9.861}{\Delta T_{g_{prp}}} \right) \left(\frac{\Delta T_{g_{prp}} + t_{g_{prp}}}{100} \right)^{2.565} - \left(\frac{t_{g_{prp}}}{100} \right)^{2.565} \right] \right\} K_{r_pr} \left[\frac{W}{m^2 K} \right] \\ \alpha_{g_pr} &= \alpha_{c_g_pr} + \alpha_{r_g_pr} \left[\frac{W}{m^2 K} \right] \end{aligned}$$
(4.317)

En cuanto al aire se tiene el factor K_{a_pr} con la ecuación (4.318), se hallan los coeficientes f_{a_pr} y f_{d_pr} , la viscosidad dinámica del aire en el precalentador μ_{a_pr} y su número adimensional de Reynolds Re_{a_pr} además del coeficiente de transferencia de calor total del aire α_{a_pr} , el cual es puramente convectivo debido a que el aire no emite radiación. Como dato T_{g_prf} se utiliza en °C.

$$K_{a_pr} = 4.888 + 0.539 \left(\frac{t_{a_prf}}{100}\right) - 0.0107 \left(\frac{t_{a_prf}}{100}\right)^2$$
(4.318)

$$f_{a_pr} = 1.02$$
 (4.319)

$$f_{d_pr} = 1 \tag{4.320}$$

$$\mu_{a_pr} = \left[17.06 + 47.45 \left(\frac{t_{a_prf}}{1000} \right) - 18.68 \left(\frac{t_{a_prf}}{1000} \right)^2 \right] \times 10^{-6} \left[\frac{kg}{m \, s} \right]$$
(4.321)

$$Re_{a_pr} = \frac{G_{a_pr}d_{o_pr}}{\mu_{a_pr}}$$
(4.322)

$$\alpha_{a_pr} = K_{a_pr} \left(\frac{G_{a_{pr}}^{0.61}}{d_{o_{pr}}^{0.39}} \right) f_{a_pr} f_{d_pr} \left[\frac{W}{m^2 K} \right]$$
(4.323)

Con los anteriores resultados se pasa al cálculo del coeficiente global de transferencia de calor para el precalentador U_{o_pr} con el que se puede calcular la superficie total en el precalentador S_{pr} y a su vez la longitud total de los tubos L_{t_pr} y la altura del paso de aire l_{h_pr} .

$$U_{o_pr} = \frac{1}{\frac{1}{\alpha_{g_pr}} rel_{dia_pr} + R_{t_g} rel_{dia_pr} + \frac{d_{o_{pr}}}{2k} \ln(rel_{dia_pr}) + \frac{1}{\alpha_{a_ec}}} \left[\frac{W}{m^2 K}\right]$$
(4.324)

$$S_{pr} = \frac{Q_{pr}}{3.6U_{o_{pr}}\Delta t_{ml_{pr}}} \ [m^2]$$
(4.325)
$$L_{t_pr} = \frac{S_{pr}}{\pi d_{o_{pr}} n_{tt_pr}} \quad [m]$$
(4.326)

$$l_{h_{pr}} = \frac{L_{t_{pr}}}{3} \ [m] \tag{4.327}$$

Habiendo realizado dichos pasos, se procede a calcular la densidad del aire del precalentador ρ_{a_pr} utilizando la densidad del aire en condiciones standard (0° C y 1 atm) ρ_{a_0} además, se hallan los factores f_{a_pr} y f_{d_pr} . Es importante aclarar que no son los mismos que se calcularon anteriormente, sino que estos se utilizan en el cálculo de la caída de presión del aire ΔP_{a_pr} del apartado 2.3.1.3, para esto es necesario el valor de la presión a la salida del aire en el precalentador P_{a_pr2} (asumida), el número de pasos para el aire $n_{p_a_pr}$ y la velocidad del aire w_{a_pr} . Con estos, se calcula la presión de entrada del aire P_{a_pr1} .

$$f_{a_pr} = 0.38 \tag{4.328}$$

$$f_{d_nr} = 1 \tag{4.329}$$

$$P_{a_pr2} = 10419 \ mm \ H_2 0 \tag{4.330}$$

$$\rho_{a_pr} = 1.292 \ \frac{kg}{m^3} \tag{4.331}$$

$$\rho_{a_pr} = \rho_{a_0} \left(\frac{P_{a_pr2} T^0}{P^0 T_{a_prm}} \right) \left[\frac{kg}{m^3} \right]$$
(4.332)

$$w_{a_pr} = \frac{G_{a_pr}}{\rho_{a_pr}} \left[\frac{m}{s}\right]$$
(4.333)

$$n_{p_a_pr} = 3 \ pasos \tag{4.334}$$

$$\Delta P_{a_pr} = n_{p_a_pr} \times 0.102 f_{a_pr} f_{d_pr} n_{f_pr} \rho_{a_pr} \frac{w_{a_pr}^2}{2} \ [mmH_2 0]$$
(4.335)

$$P_{a_pr1} = P_{a_pr2} + \Delta P_{a_pr} \ [mmH_20] \tag{4.336}$$

En cuanto a los gases de combustión se tiene que:

$$\zeta_{pr} = 1.5 \tag{4.337}$$

$$\lambda_{pr} = 0.025 \tag{4.338}$$

$$\Delta P_{g_pr} = 0.102 \left(\zeta_{pr} + \lambda_{pr} \frac{L_{t_pr}}{d_{i_{pr}}} \right) \rho_{g_pr} \frac{w_{a_pr}^2}{2} \ [mmH_2O]$$
(4.339)

$$P_{g_{pr2}} = P_{g_{pr1}} - \Delta P_{g_{pr}} \ [mmH_2 0] \tag{4.340}$$

4.4.6. Componentes complementarios

4.4.6.1. Calderín de vapor

El volumen del calderín de vapor se calcula con la ecuación (4.341), donde \dot{m}_w es el flujo másico de agua que ingresa a la caldera y ρ_w es la densidad del agua a la temperatura $T_{sat@P_v}$. La fórmula contempla que el calderín pueda aportar agua durante 6 minutos en caso de una falla de agua saturada con los quemadores encendidos. El largo del calderín L_{cld} es ligeramente superior al ancho del generador l_f , con el cual se calcula el diámetro del calderín d_{cld} .

$$V_{cld} = 360 \left(\frac{\dot{m}_w}{3600\rho_w}\right) \ [m^3]$$
 (4.341)

$$L_{cld} = 0.65 [m]$$
 (4.342)

$$d_{cld} = \sqrt{\frac{V_{cld}}{\frac{\pi}{4}L_{cld}}} [m]$$
(4.343)

4.4.6.2. Tubos bajantes

Los tubos bajantes generan un diferencial de presión para que se pueda generar la circulación natural de agua. Este aumenta con la altura del tubo y disminuye con las caídas de presión. Debido a esto se debe escoger una velocidad másica de agua G_w relativamente baja (entre $1000 - 2000 kg/m^2s$) para evitar caídas de presión. La longitud de los tubos es igual a la altura del generador de vapor. El diámetro interno se calcula con la ecuación (4.345); además, se contemplan dos tubos bajantes.

RFN

$$G_w = 1050 \left[\frac{kg}{m^2 s} \right] \tag{4.344}$$

$$d_{i_tb} = \sqrt{\frac{\dot{m}_v R_{ev}}{1800\pi G_w}} \ [m]$$
(4.345)

4.4.6.3. Chimenea

Para el dimensionamiento del calderín de vapor se asume una velocidad inicial de los gases de combustión en la chimenea w_{g_ch} igual a 10 m/s, para así se pueda calcular la densidad de estos ρ_{g_ch} y finalmente calcular un diámetro d_{ch} para esta. El proceso se repite hasta tener un error mínimo, pero ahora w_{g_ch} es calculada con la ecuación (4.348) donde se utilizan los datos antes hallados.

$$\rho_{g_ch} = \rho_{g_0} \frac{T_{ref}}{T_{g_ch}} \left[\frac{kg}{m^3}\right]$$
(4.346)

$$d_{ch} = \sqrt{\frac{m_g}{900\pi w_{g_ch}\rho_{g_ch}}} [m]$$

$$\dot{m}_a \qquad (4.347)$$

$$w_{g_ch} = \frac{m_g}{900\pi\rho_{g_ch}d_{ch}^2} \left[\frac{m}{s}\right]$$
(4.348)

Para el tiro natural, la altura l_{h_ch} se escoge de 10 m, aunque debe ser mayor al de la normativa del lugar donde este el generado de vapor.

$$\Delta P_{ch} = \rho_{g_0} l_{h_ch} \times 273.15 \left(\frac{1}{T_{ap}} - \frac{1}{T_{g_ch}} \right) [mmH_2 0]$$
(4.349)

Y por último en cuanto a la caída de presión en los gases de combustión en la chimenea se tiene:

$$\Delta P_{g_ch} = 0.102 \left(1 + 0.035 \frac{l_{h_ch}}{d_{ch}} \right) \rho_{g_ch} \frac{w_{g_ch}^2}{2} \ [mmH_2 0] \tag{4.350}$$

4.4.6.4. Ventiladores

a) De tiro forzado

Se calcula el diferencial de presión estática ΔP_{tf} con un factor de seguridad de 1.4.

$$\Delta P_{tf} = 1.4 (\Delta P_{a_pr} + 80) \ [mmH_20] \tag{4.351}$$

Luego el caudal de aire \dot{V}_{tf} que deberá ser capaz de soplar con un factor de seguridad de 1.25:

$$\dot{V}_{tf} = 1.25 \frac{\dot{m}_a}{\rho_{a_0}} \left[\frac{m^3}{s} \right]$$
 (4.352)

Y finalmente la temperatura que soportará será la del aire primario.

$$T_{tf} = T_{ap} [K] \tag{4.353}$$

b) De tiro inducido

De la misma forma que el anterior, se calcula el diferencial de presión estática ΔP_{ti} con un factor de seguridad de 1.3.

$$\Delta P_{ti} = 1.3 \left(30 + \Delta P_{g_pt} + \Delta P_{g_ev} + \Delta P_{g_ec} + \Delta P_{g_pr} + \Delta P_{g_ch} - \Delta P_{ch} \right) \left[mmH_2 0 \right]$$
(4.354)

Luego el caudal de aire \dot{V}_{ti} que deberá ser capaz de soplar con un factor de seguridad de 1.25:

$$\dot{V}_{ti} = 1.25 \frac{\dot{m}_g}{\rho_{g_ch}} \left[\frac{m^3}{s}\right]$$
(4.355)

Y finalmente la temperatura que soportará será la de los gases de combustión en la chimenea.

$$T_{ti} = T_{g_ch} [K]$$
 (4.356)

4.5. Diagramas de metodología utilizada

Las figuras 45 y 46 muestran el diagrama de flujo de la metodología del balance de masa y energía, y del dimensionamiento respectivamente.

La figura 47 muestra el diagrama de Sankey del consumo de energía térmica de la caldera diseñada. Cabe resaltar que la transmisión de energía entre las diferentes etapas en este diagrama está a escala.

Figura 45. Diagrama de flujo de metodología de cálculo de balances de masa y energía Fuente: Elaboración propia

Figura 46. Diagrama de flujo de metodología de diseño y dimensionamiento Fuente: Elaboración propia

Figura 47. Diagrama de Sankey del consumo térmico en la caldera

Capítulo 5 Resultados

5.1. Balance de masa

Las tablas 7 y 8 proporcionan los resultados más notorios de los cálculos del balance de masa en el generador de vapor.

Como se explicó anteriormente, no se ha tomado en cuenta la formación y emisión de SO_2 y NO_x , compuestos de suma importancia en la contaminación al medio ambiente y corrosión a la caldera misma. En el caso del monóxido de carbono (*CO*) sí se ha considerado significativo como parte de la combustión incompleta, por lo que se utiliza un alto exceso de aire.

Nom	bre	kg/kg de b	agazo húmedo		kg/h	%
	Aire seco		8.8005	2128.816		99.328%
Aire	H ₂ O).0257		14.402	0.672%
	Total	A_m	3.8262	\dot{m}_a	2143.218	100%
	Bagazo seco	C).4878		273.241	48.78%
Bagazo de	H ₂ O		0.5		280.072	50%
Cana	Cana Ceniza 0.0122		6.831		1.22%	
	Total	1.000		\dot{m}_c	560.144	100%
	СО	СО	0.0110		6.175	0.229%
	<i>CO</i> ₂	<i>CO</i> ₂	0.8438		472.642	17.528%
Gases de	H ₂ 0	H ₂ 0	0.8185		458.485	17.003%
Combustión	N_2	<i>N</i> ₂	2.9146		1632.62	60.546%
	02	02	0.2261		126.654	4.697%
Total G _m		G_m	4.8139	\dot{m}_g	2696.496	100%
Relación vap	oor/bagazo	$R_{\nu/b}$	1.7853	ṁν	1000	100%

Tabla 7. Flujos másicos del balance de masa de la caldera

Fuente: Elaboración propia

Nombre		nm3/kg de bagazo húmedo		nm3/h		%
	Aire seco	2.9	2.9524		2051.298	98.927%
Aire	H ₂ 0	0.	032	22.249		1.073%
	Total	A_v	2.9844	\dot{V}_{tf}	2073.547	100%
	СО	[CO]	0.0088	9.367		0.223%
	<i>CO</i> ₂	[<i>CO</i> ₂]	0.4297		457.256	10.886%
Gases de	H ₂ 0	$[H_2 O]$	1.0182		1083.535	25.796%
Combustión	<i>N</i> ₂	$[N_2]$	2.332		2480.379	59.051%
	02	[<i>O</i> ₂]	0.1583	168.478		4.011%
	Total	G_{v}	3.9471	\dot{V}_{ti}	4200.401	100%

Tabla 8. Flujos volumétricos del balance de masa de la caldera

5.2. Balance de energía

La tabla 9 proporciona los resultados más notorios de los cálculos del balance de energía en el generador de vapor, analizando las ganancias y pérdidas energéticas en este por kilogramo de bagazo húmedo; en cambio, la tabla 10 proporciona los resultados de la potencia aportada y consumida.

	Nombre	Símbolo	Resultado	Unidades
	PCI	q _i	7639.085	kJ/ kg de bagazo húmedo
Ganancias	Por aire entrante	<i>q_{ap}</i>	7.738	kJ/ kg de bagazo húmedo
	Por bagazo entrante	$R_{q_c}E$	5.9453	kJ/ kg de bagazo húmedo
	Por combustión incompleta	q _{ci}	111.1314	kJ/ kg de bagazo húmedo
Dórdidas	Por calor sensible en chimenea	q_{ch}	868.3918	kJ/ kg de bagazo húmedo
Peruluas	Por radicación externa	q_{rp}	169.916	kJ/ kg de bagazo húmedo
	Por ceniza	q_{cz}	190.9771	kJ/ kg de bagazo húmedo
Calo	raprovechable	q_a	6312.3485	kJ/ kg de bagazo húmedo

Tabla 9. Análisis energético específico

Fuente: Elaboración propia

	Nombre	Símbolo	Resultado	Unidades
Flujo másio	co de bagazo húmedo	\dot{m}_c	560.1436	kg bagazo húmedo/h
	PCI		4278984.573	kJ/h
Ganancias	Por aire entrante	\dot{Q}_{ap}	4334.391177	kJ/h
	Por bagazo entrante	\dot{Q}_c	3330.221745	kJ/h
	Por combustión incompleta	<i>॑</i> Q _{ci}	62249.54247	kJ/h
Pérdidas	Por calor sensible en chimenea	\dot{Q}_{ch}	486424.1091	kJ/h
	Por radicación externa	\dot{Q}_{rp}	95177.35994	kJ/h
	Por ceniza	<u>C</u> \dot{Q}_{cz}	106974.6003	kJ/h
Calo	r aprovechable 💦 📘		3535821.613	kJ/h

Tabla 10. Análisis energético instantáneo

En la tabla 11 se muestra el rendimiento de la caldera.

Tabla 11. 1	Rendimiento	de caldera	diseñada	5
-------------	-------------	------------	----------	---

Nombre	Símbolo	Resultado	Unidades	
Rendimiento ¹¹	η_g	82.63		%
			A	

Fuente: Elaboración propia

En la tabla 12 se detalla el requerimiento de energía térmica en cada etapa de la generación del vapor y la fuente de calor de la cual se le extrae.

5.3. Diseño

En la tabla 13 se aprecia los resultados de la cámara de combustión. Vale recalcar que el porcentaje de calor irradiado ($Q_{r\%}$), igual a 31% aproximadamente, es la porción del calor introducido \dot{Q}_i que absorben las paredes.

En cuanto a la tabla 14 se exponen los coeficientes de transferencia de calor de cada intercambiador de calor en la caldera. Ambos coeficientes α y U_o están en $W/^{\circ}Cm^2$.

En la tabla 15 se presentan las áreas de cada intercambiador de calor, así como las áreas acumuladas con las respectivas temperaturas tanto de los gases de combustión, así como del fluido a calentar (agua, vapor o aire). El área total resultante es de 63.7 m^2 aproximadamente.

¹¹ Los valores de rendimiento energético de calderas acuotubulares bagaceras están en el rango de 80% a 85%. El valor obtenido se encuentra dentro de este rango.

Req. de térn	energía nica	F. de energía	Resu	Resultado (kJ/h)		otal (kJ/h)
Al econo	mizador	Gas Comb.	\dot{Q}_{ec_g}	379,530.8123	Q _{ec}	379,530.8123
	Paredes de agua	Rad. Llama	\dot{Q}_r	1'342,399.925		
	Dantalla	Gas Comb.	\dot{Q}_{pt_g}	27,124.138		
	Panlana	Rad. Llama	\dot{Q}_{pt_r}	15,213.897		
	Evap. Sec.	Gas Comb.	\dot{Q}_{ev_g}	533,545.03		
Evaporador	Pared lateral / eco	Gas Comb.	Ż _{plec_g}	16,395.581	Q _{ev}	1'967,469.733
	Pared lateral / evap	Gas Comb.	\dot{Q}_{plev_g}	16,395.581		
	Pared lateral / sob	Gas Comb.	Ż _{plsb_g}	16,395.581		
Al sobreca	alentador	Gas Comb. Rad. Llama	Q́ _{sb_g} Q́ _{sb_r}	1'170,961.484 17,859.792	<i>Q</i> _{sb}	1'188,821.277
Al preca	entador	Gas Comb.	$\dot{Q}_{pr q}$	378,723.978	\dot{Q}_{pr}	378,723.978
³ uente: Elaboración propia						
Tabla 13. Re	esultados de	cámara de comb	oustión	7		

Tabla 12. Requerimiento de energía térmica en cada intercambiador de calor

Tabla 13. F	Resultados	de cámara	de	combustio	ón	
-------------	------------	-----------	----	-----------	----	--

Cámara de combustión								
Parámetros	Símbolo	Unidades	Resultado					
Calor introducido por kg de combustible	H'_i	kJ/ kg de bagazo	7,853.02					
Calor introducido 🦳 🔎 💼	,	kJ/h	4'278,984.43					
Calor irradiado	\dot{Q}_r	kJ/h	1'371,932.00					
Porcentaje de calor irradiado	$Q_{r\%}$	%	31.19					
Emisividad en cámara de combustión	Е	Adimensional	0.69					
Temperatura adiabática de llama	T _{ad}	К	1,525.5					
Temperatura de salida de cámara	T_{cc2}	К	1,175.93					
Velocidad media de gases de combustión	Wg_cc	m/s	9.71					
Área de sección transversal	A_{t_cc}	m^2	0.314					
Altura	l_h	m	2.58					
Ancho	l_f	m	0.6					
Longitud transversal	l_t	m	0.52					
Altura de ventana	l_v	m	0.72					
Superficie de cámara de combustión	S_{cc}	m^2	5.2					

Fuente: Elaboración propia

Las caídas de temperatura del gas por cada etapa se pueden apreciar en la figura 48, la cual se asemeja mucho a la figura 49 de la caída de temperaturas de una caldera tradicional (Alderetes, 2016). En cambio, el área acumulada permite ver el perfil de temperaturas de los gases y fluidos a calentar, en el cual estas disminuyen mientras el área aumenta debido a la menor diferencia de temperatura que existe. En la figura 50 se ve nuestro perfil de temperaturas vs área acumulada, mientras en la figura 51 se observa uno similar de una caldera validada por Andrade-Liviapoma (2015).

Intercambiador		Tubos		Envolvente		п
		Fluido	α	Fluido	α	\boldsymbol{v}_o
Pan	talla	Mezcla agua sat/vapor	12000	Gases	80.18	74.92
Sebrecelentador	Sobrecalentador	Vapor sobrecalentado	317.1	Gases	120.1	75.44
Soprecalentador	Pantalla lateral	Mezcla agua sat/vapor	12000	Gases	90	90
Evaporador Evaporador s.		Mezcla agua sat/vapor	12000	Gases	57.17	54.65
Secundario	Pantalla lateral	Mezcla agua sat/vapor	12000	Gases	80	80
Foonomizador	Economizador	Agua líquida	1005.3	Gases	61.97	55.93
Economizador	Pantalla lateral	Mezcla agua sat/vapor	12000	Gases	70	70
Precalentador de aire		Gases de combustión	58.36	Aire	128.8	31.25

Tabla 14. Coeficientes de transferencia de calor en cada intercambiador de calor

Fuente: Elaboración propia

		Áreas (m2)		Temperatura (°C)			
Intercambiadores	Intercambiadores de Calor		Área Acumulada	Gases		Agua/vapor/aire	
Cámara do com	hustián	5.2	0	T _{ad}	1252.5	T _{sat@Pd}	192.77
Califara de Colli	bustion	5.2	5.2	T _{cc2}	902.9	$T_{sat@P_d}$	192.77
Dontalla		0.52	5.2	T_{g_pt1}	902.9	$T_{sat@P_d}$	192.77
Pantalla		0.52	5.72	T_{g_pt2}	877.7	$T_{sat@P_d}$	192.77
	Sob.	10.85	5.72	T_{g_sb1}	877.7	T_{v_sb2}	450
Sobrecalentador	Pared lat.	0.3	16.87	T_{g_sb2}	562.3	T_{v_sb1}	192.77
Evanorador	Evap.	9.45	16.87	T_{g_ev1}	562.3	$T_{sat@P_d}$	192.77
Secundario	Pared lat.	0.5	26.82	T_{g_ev2}	410.9	T _{sat@Pd}	192.77
	Eco.	8.25	26.82	T_{g_ec1}	410.9	T_{w_ec2}	137.77
Economizador	Pared lat.	0.8	35.87	T_{g_ec2}	294.6	T_{w_ec1}	105
Drocalonta	lor	0 77	35.87	T_{g_pr1}	294.6	$\overline{T_{a_pr2}}$	200
Frecalenta		27.8	63.67	T_{g_pr2}	179.4	T_{a_pr1}	27

Tabla 15. Áreas de transferencia de calor y temperaturas de intercambiadores de calor

Fuente: Elaboración propia

Figura 48. Caída de temperatura de los gases de combustión de caldera diseñada Fuente: Elaboración propia

Figura 49. Caída de temperatura de los gases de combustión de una caldera tradicional Fuente: Alderetes (2016)

 Figura 50. Perfil de temperaturas vs. superficie acumulada de caldera diseñada (1 ton/h)

 Fuente: Elaboración propia

Figura 51. Perfil de temperaturas vs superficie acumulada de caldera 100 ton/h (450°C – 43 bar)

Fuente: Andrade-Liviapoma (2015)

Finalmente, en la tabla 16 se exponen las caídas de presión existentes en la caldera diseñada.

Variación de presión de	Fluido	Caío	la de Presión	
Pantalla	Gases de Combustión	ΔP_{g_pt}	0.305 mm H ₂ O	
Sobrecalentador	Gases de Combustión	ΔP_{g_sb}	11.11 mm H ₂ 0	
	Vapor de Agua	ΔP_{v_sb}	5.65 kPa	
Evaporador Sec.	Gases de Combustión	ΔP_{g_ev}	1.57 mm H ₂ 0	
Economizador	Gases de Combustión	ΔP_{g_ec}	101.14 mm H ₂ 0	
	Agua	ΔP_{w_ec}	0.21 kPa	
Precalentador	Gases de Combustión	ΔP_{g_pr}	22.72 mm H ₂ 0	
	C Aire C	ΔP_{a_pr}	260.66 mm H ₂ O	
Chimenea	Gases de Combustión	ΔP_{g_ch}	8.78 mm H ₂ 0	
Tiro Chimenea	Gases de Combustión	ΔP_{ch}	3.74 mm H ₂ 0	
Tiro Inducido	Gases de Combustión	ΔP_{ti}	171.88 mm H ₂ 0	
Tiro Forzado	Aire	ΔP_{tf}	340.66 mm H ₂ 0	

Tabla 16. Variación de presión en los distintos componentes de la caldera

5.4. Resultados de variación de parámetros

5.4.1. Variación de flujo másico de vapor producido

Según lo explicado en el anterior apartado, se procedió a calcular distintos valores de los parámetros de la caldera en función al flujo másico del vapor producido, para así poder graficarlo utilizando este último valor como variable independiente, y poder darnos una idea de cómo varían dichos parámetros para sacar algunas conclusiones del modelo planteado.

Cabe resaltar que solo se pudo hacer variaciones en el balance energético y no en el dimensionamiento de los componentes, pues este último contiene datos que se tienen que obtener previamente al cálculo (dependiendo del paso anterior) de gráficos, los cuales serían muy complejos para ajustarlos a un código para iteración.

Para esta iteración se escogió la ayuda del software Matlab mediante el comando "while" se tabuló los valores de los parámetros desde un valor de 0 kg/s a 1500 kg/s de vapor producido.

En las figuras 52 a la 62 se muestra los resultados de una simulación para calcular distintos valores respecto a los kilogramos de vapor producido como variable independiente.

Como se puede observar en las figuras 52 y 53 las cuales muestran el flujo másico de bagazo y el calor aprovechable respectivamente, se nota una proporcionalidad directa frente al flujo másico de vapor producido, lo cual es lógico, ya que al incrementarse la necesidad de producción de vapor se requiere más energía, por ende, un aumento del combustible para la liberación de energía en su combustión. Dado esto, se genera un incremento del flujo calor aprovechable en el hogar.

Figura 52. Flujo másico de vapor vs. flujo másico de bagazo Fuente: Elaboración propia

Figura 53. Flujo másico de vapor vs. calor aprovechable Fuente: Elaboración propia

En cambio, en la figura 54 las pérdidas por radiación denotan una proporcionalidad inversa, lo que puede ser debido a que al incrementar el flujo de vapor producido se incrementa el flujo de gases de combustión, lo que genera que la estancia de estos en la cámara de combustión se reduzca reduciéndoles la posibilidad de perder calor por radiación en esta zona.

Figura 54. Flujo másico de vapor vs. pérdidas por radiación Fuente: Elaboración propia

De la misma manera el PCI, el calor de aire entrante, el calor de combustible entrante, las perdidas por combustión incompleta, las pérdidas por ceniza y las perdidas por chimenea (todos por unidad de masa de combustible) en las figuras 55, 56, 57, 58, 59 y 60 respectivamente demuestran un valor constante para cualquier valor de masa de vapor producido ya que no dependen de este término. Sin embargo, sus valores energéticos instantáneos (kJ/h) sí varían linealmente en función a la masa de vapor producido, puesto que están influenciados por el flujo másico de combustible.

Figura 56. Flujo másico de vapor producido vs. calor entrante de aire primario Fuente: Elaboración propia

Figura 57. Flujo másico de vapor producido vs. calor entrante por combustible Fuente: Elaboración propia

Figura 58. Flujo másico de vapor producido vs. pérdidas por combustión incompleta Fuente: Elaboración propia

Figura 60. Flujo másico de vapor producido vs. pérdidas por chimenea Fuente: Elaboración propia

Por último, con la figura 61 se tiene una relación vapor producido/bagazo consumido casi máxima para un bagazo de humedad del 50% y en la figura 62 se observa un rendimiento de la caldera de casi el 83%, lo que hace que denote un buen aprovechamiento del calor en la producción de vapor.

Figura 61. Flujo másico de vapor vs. relación vapor/bagazo Fuente: Elaboración propia

Figura 62. Flujo másico de vapor vs. rendimiento energético Fuente: Elaboración propia

5.4.2. Variación de flujo másico de vapor producido y humedad del bagazo

Otro de los parámetros que se puede controlar es la humedad presente en el bagazo (W), en las figuras 63, 64 y 65 se puede observar la relación vapor-bagazo, el rendimiento energético y el flujo másico de combustible vs. el porcentaje de humedad del bagazo respectivamente; mostrando que este parámetro (W) influye mucho más en los rendimientos másicos y energéticos que el flujo másico de vapor producido.

Debido a esta observación se procedió a hacer una gráfica en tres dimensiones donde el eje X sea el flujo másico de vapor producido, el Y la humedad del bagazo y el Z la variable.

Figura 63. Relación vapor-bagazo vs. humedad del bagazo Fuente: Elaboración propia

Figura 64. Rendimiento de caldera vs. humedad del bagazo Fuente: Elaboración propia

Figura 65. Flujo másico de vapor vs. humedad del bagazo Fuente: Elaboración propia

Las figuras 66 a la 68 muestran el patrón de gráfico en 3 dimensiones explicado. La figura 69 en el eje X es el flujo másico de vapor producido, el eje Y el flujo másico de bagazo consumido y el eje Z la humedad del bagazo.

No se ha incluido en las figuras el calor aprovechable pues varía linealmente solo en función al flujo másico de vapor producido y tampoco el PCI (calor liberado en combustión), el calor por aire entrante, el calor por bagazo entrante, pérdidas por combustión incompleta, chimenea y ceniza ya que varían linealmente solo en función de la humedad (W).¹²

En la figura 66 están algunos de los valores de rendimiento energético de la caldera, notándose variación de este en función al flujo másico de vapor producido, principalmente en producciones de baja capacidad. Sin embargo, la variación que existe debido a la humedad presente en el bagazo es de mayor influencia, lo que muestra que es posible obtener valores destacables de rendimiento entre el 80-82% con una producción de menor capacidad (60 a 150 kg/h), siempre y cuando la humedad presente ronde de 25% a 35%.

¹² Valores de las ganancias y pérdidas de energía en kJ/kg.

vapor producido y la humedad del bagazo

En este caso en particular si se disminuye la humedad del bagazo a la mitad (25%) se mejoraría un 2.34% el rendimiento de la caldera, y si se reduce la humedad al 10% se mejoraría un 2.82%.

Las pérdidas por radiación, en la figura 61, aumentan a medida que la humedad disminuye, ya que el PCI del bagazo aumenta, sin embargo, no son significativas en comparación a este, ya que son alrededor del 2% del PCI y el aumento de productividad que conlleva disminuir la humedad del bagazo es mucho más considerable.

En la figura 62 se observa que el flujo másico de vapor producido influye muy poco en la relación vapor-bagazo, que viene a ser el rendimiento másico de la caldera. En cambio, la humedad del bagazo influye considerablemente en este parámetro. Para este caso en particular, si se reduce la humedad del bagazo a la mitad (25%) se optimizaría en 70.36% la relación vapor-bagazo. Esto denota un mejor aprovechamiento de combustible en la producción de vapor

Por último, en la figura 63 se observa que aumenta el flujo másico de combustible (bagazo) considerablemente para humedades altas, notándose más en producciones altas de vapor. En este caso en particular, si se reduce la humedad del bagazo a la mitad (25%) se ahorraría un 41.3% de combustible aproximadamente.

Figura 67. Pérdidas por radiación en función del flujo másico de vapor producido y la humedad del bagazo

Figura 68. Relación vapor-bagazo en función al flujo másico de vapor y la humedad del bagazo

Fuente: Elaboración propia

Figura 69. Flujo másico de bagazo consumido en función al flujo másico de vapor producido y a la humedad del bagazo

5.5. Validación

Para la validación del modelo de generador diseñado, se comparará con los datos técnicos de un generador de vapor del mercado. En este caso se cuenta con los datos del generador de vapor diseñado por Sitong Boiler Company, caldera modelo DZH1-0.7/1.0/1.25-T (ver figura 70) alimentada por bagazo o cáscara de arroz. Estos parámetros se pueden apreciar en la tabla 17.

Esta caldera tiene una capacidad de producción de vapor de 0.5 - 4 t/h y una presión de trabajo de 0.7 - 3.8 MPa. Puede ser alimentada por bagazo, cáscara de arroz, paja, madera, carbón y otros tipos de biomasa. En cuanto a sus aplicaciones se tiene la molienda de azúcar o arroz, producción de alimentos o bebidas, granjas, etc.

Tiene un solo calderín y el equipo de combustión está detrás de la rejilla. Tiene las ventajas de alta eficiencia térmica, evita la coquización, es de bajo costo y protege el ambiente (Sitong Boiler Company, 2014).

Figura 70. Caldera DZH alimentada por biomasa Fuente: (Sitong Boiler Company, 2014)

Modelo	Capacidad de vapor (t/h)	Presión de trabajo (Mpa)	Eficiencia térmica (%)	Consumo de combustible (kg/h)	Dimensiones LxWxH (mm)	Peso (t)
DZH0.5-0.7/1.0-T	0.5	0.7/1.0	78	150	3228x2000x2656	8
DZH1-0.7/1.0/1.25-T	1	0.7/1.0/1.25	80	301	4108x2200x2915	12
DZH2-0.7/1.0/1.25/1.6-T	2	0.7/1.0/1.25/1.6	80	602	4700x2300x3270	15
DZH4-1.25/1.6-T	4	1.25/1.6	80	1190	5600x2550x3563	22

 Tabla 17. Parámetros de caldera DZH alimentada por biomasa

Nota 1. Parámetros solo para referencia, si ubiera algún cambio, consultar a la compañía.

Nota 2. Nuestra compañia puede diseñar calderas para los requerimientos de nuestros clientes y de diferentes combustibles de biomasa.

Fuente: (Sitong Boiler Company, 2014)

La caldera seleccionada para la validación produce 1000 kg/h de vapor, al igual que el modelo diseñado. En cuanto a su presión de trabajo es de 1250 kPa muy parecido a los 1200 kPa de la diseñada. No está incluido los parámetros de trabajo como la humedad relativa y la temperatura ambiente, ni tampoco la humedad del combustible, que como se ha visto anteriormente es muy importante.

Teniendo en cuenta los resultados de esta tesis, se obtuvo un rendimiento energético del 82.63%, un flujo másico de combustible de 560.14 kg/h para una humedad del bagazo del 50% (la cual es considerablemente alta). Como se ha visto, con la aplicación de un secador de bagazo se puede conseguir reducir esta humedad hasta el 15% aproximadamente, lo que nos daría de resultado una eficiencia energética de 84.86% y un flujo de combustible de 282.3 kg/h.

La eficiencia de la caldera DZH1-0.7/1.0/1.25-T es aproximadamente del 80%, un poco menor a la de la diseñada, sin embargo, estos resultados son teóricos y se tienen que comprobar en el lugar de aplicación. Tiene un flujo másico de combustible de 301 kg/h, pero como se ha explicado no se menciona el porcentaje de humedad del combustible. Sin embargo, la caldera diseñada puede conseguir dicho consumo de combustible con una humedad de 20% aproximadamente (ver figura 71, $X = \dot{m}_{vapor}$, $Y = \dot{m}_{bagazo}$, Level = humedad).

Figura 71. Flujo de combustible para humedad del bagazo del 20% y 1000 kg/h de vapor

Fuente: Elaboración propia

Igualmente, tiene una altura total de 2915 mm mientras que la diseñada tiene una altura de cámara de combustión de 2589 mm, sin embargo, no se debe olvidar que a esta medida aún se le debe añadir el espesor del aislamiento.

Con todo lo mencionado además de la ratificación de la temperatura supuesta de chimenea en los cálculos, se puede validar el modelo diseñado.

Capítulo 6 Mantenimiento y operación

El presente capítulo esta desarrollado con la finalidad de darle una mejor calidad de vida al generador de vapor, donde muchos datos han sido obtenidos de estadísticas aplicadas a calderas de bagazo específicamente. Meramente son recomendaciones para seguir dadas por diversos autores.

6.1. Mantenimiento de una caldera bagacera

Las calderas son equipos que se han diseñado para una vida útil de 25 a 30 años; obviamente para conseguir dichos resultados es más que claro que ha de haberse realizado una operación correcta y de una implementación de un programa de mantenimiento basado en actividades preventivas y de monitoreo de condiciones (Alderetes, 2016).

Según lo expuesto en el libro Calderas a Bagazo: Producción, operación y mantenimiento (Alderetes, 2016), el autor explica que sobre todo las partes sometidas a presión son las que están expuestas a tensiones y desgastes en los que dan a lugar diversas solicitaciones mecánicas y térmicas, originando las causas de fallas más comunes siendo:

- Corrosión (externa e interna)
- Erosión (externa e interna)
- Fatiga
- Creep (deformación por fluencia lenta)
- Vibraciones provenientes del lado del agua o gases
- Tensiones provenientes de dilataciones térmicas, variaciones de presión, etc.

Siendo una falla, en mantenimiento, la causa o evento que nos lleva a la finalización de la capacidad de un equipo para realizar su función adecuadamente o para dejar de realizarla en su totalidad (Hernández, 2016). En la tabla 18 se puede observar los mecanismos de desgaste en los distintos componentes de una caldera.

Estas fallas tienen gran impacto ya que pueden generar situaciones tales como:

- Pérdidas de eficiencia
- Reducción de capacidad
- Rotura, deformaciones, fisuras y grietas en los componentes
- Reducción de vida útil
- Incrementos en tiempos de parada
- Riego para personas
- Aumentos en costo de mantenimiento
- Aumento de consumo de bagazo
- Reducción de capacidad de procesamiento (en nuestro caso panela)

Cabe mencionar que el desgaste en las calderas bagaceras ha ido aumentando progresivamente de forma directa a la implementación de cosecha mecánica, debido a un aumento de material inorgánico presente en el bagazo, volviéndose partículas erosivas.

6.2. Mecanismos de desgaste y tipo de fallas

Como se ha explicado anteriormente, las fallas generan un gran impacto económico en la vida del proyecto por lo que las causas más comunes han sido estudiadas y documentadas.

En la figura 72 el porcentaje del lugar de fallas y en la figura 73 se puede observar el porcentaje de los mecanismos de fallas.

Respecto a las causas de estas fallas se encuentra en la tabla 19 y la influencia que tienen las diferentes etapas que intervienen en la vida del equipo en los mecanismos de falla en la tabla 20.

	Mecanismo de desgaste						
Componente	Creep	Fatiga	Corrosión	Erosión interna / FAC	Erosión externa	Deformación térmica/mecánica	
Paredes de tubos agua	x	x	x	x	x	×	
Tubos del economizador		x	×	x	x	x	
Cabezales del sobrecalentador	×	×	×	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		×	
Calderines superior e inferior		×	×	x		x	
Cabezales de paredes de tubos de agua		x	×	×		×	
Tubos bajantes		X	x	x		X	
Cabezales de entrada del econominzador		x	x	x		×	
Tubería de vapor principal	×	x				x	
Tubería del sobrecalentador		x	×			×	
Tubería fría para recalentamiento		×	×	x		×	
Atemperadores	x	X	×	x		X	
Válvulas		X	x	x		X	
Desaireadores		X	x	x		X	
Calentadores de agua de alimentación		x	×	x		x	
Recipientes de purga		X	x	x			

Tabla 18. Mecanismos de desgaste por componente de caldera

Fuente: (Alderetes, 2016)

2016)	55
Fallas por ubica	ción
Paredes de agua	29.40%
Sobrecalentadores	44.80%
Recalentadores	13.50%
Economizadores	4.80%
Techo	1.90%
Piso	1.40%
Otros	4.20%

Figura 72. Porcentaje de la ubicación de fallas en calderas Fuente: (Alderetes, 2016)

1. Creep (sobrecalentamiento prolongado)		23.40%
2. Fatiga		13.90%
térmica	8.60%	
corrosión	5.30%	
3. Corrosión por ceniza		12.0%
carbón	8.10%	
pretróleo	1.40%	
desperdicios	2.50%	
4. Daño por hidrógeno		10.60%
5. Fallas de soldadura		9.0%
soldaduras de metales diferentes	3,40%	
6. Alta temperatura (sobrecalentamiento momentáneo)		8.80%
7. Erosión		6.50%
8. Picaduras por oxígeno		5.60%
9. Ataque cáustico		3.50%
10. Corrosín bajo tensión	22	2.60%
	·	95.90%

Figura 73. Porcentaje de mecanismos de falla en calderas

Fuente: (Alderetes, 2016)

En el caso de calderas a bagazo se ha encontrado algunos resultados realizados en ingenios de África expuestos en la tabla 21.

Como se puede apreciar, el mantenimiento no puede hacer mucho si es que a la caldera no se le da una buena operación.

Tabla 19.	Causas de	falla de u	ına caldera
-----------	-----------	------------	-------------

Causa de falla	%
Operación incorrecta	57
Mantenimiento inadecuado	17
Tratamiento de agua	13
Otros	13

Fuente: (Alderetes, 2016)

Tabla 20. Influencia de los mecanismos de falla

Tipo de falla	Diseño	Operación	Mantenimiento
creep	Х	XXX	Х
fatiga	XXX	XX	
erosión	Х	XXX	XX
corrosión	XX	XXX	
x = débil influencia, xx= media y xxx= fuerte			

Fuente: (Alderetes, 2016)

Tipo de falla	Porcentaje
Sobrecalentamiento	53%
Erosión y corrosión	22%
Fatiga mecánica	9%
Fatiga térmica	4%
Corrosión por fatiga	4%
Stress corrosion cracking	4%
Varios	4%

Tabla 21. Tipos de falla de una caldera bagacera

Fuente: (Alderetes, 2016)

6.3. Indicadores de mantenimiento

La importancia del mantenimiento de la caldera recae en que la producción de vapor debe estar garantizada el 100% en cuando la fase productiva de panela orgánica se esté ejecutando.

En cuanto a las horas que conlleva el mantenimiento de los componentes está destacado en la figura 74.

Los conceptos modernos del mantenimiento vienen bajos las siglas en inglés RAM, que implican:

- R: "*Reliability*" o confiabilidad: Relaciona los tiempos de marcha segura y confiable.
- A: *"Availability"* o disponibilidad: Cociente del tiempo disponible del equipo en operación con el tiempo total.
- M: *"Maintainability"* o mantenibilidad: relaciona los tiempos de parada o improductivos del equipo.

Un elevado RAM debe hacerse cumpliendo la seguridad, eficiencia y disponibilidad. Así es posible extender el ciclo de vida de la caldera y reducir los impactos de los costos operativos (Alderetes, 2016). Los conceptos de RAM están estandarizados y regidos por la norma ASME RAM-1-2013.

Componente	Tiempo promedio de reparación (h)	Observaciones
1) Paredes de tubos de agua	48	Donde patines de soporte para mantenimiento de hornos moviles esté disponibles
2) Paredes de tubos de agua	72	Andamio interno del horno previsto hasta de 20 m
3) Tubos del sobrecalentador radiante (pantalla de agua)	84	Andamio interno del horno previsto hasta de 20 m
4) Tubos del sobrecalentador convectivo	.48	Pozos de registro en paredes opuestas disponibles
5) Tubos del economizador	36	La bobina de tubos dañada es retirada y sacrificada
6) Bancos de tubos del evaporador	36	La bobina de tubos dañada es retirada y sacrificada
 Tubería externa del evaporador como línea de atemperamiento, desagüe,etc. 	24	Se dispone de un sistema de drenaje adecuado y una línea d recarea de caldera

Figura 74. Tiempo de recuperación de fallas de los distintos componentes de la caldera

Fuente: (Alderetes, 2016)

También se encuentran algunos indicadores de mantenimientos relacionados a la confiabilidad y disponibilidad tales como:

- Tiempo medio entre fallas (MTBF)
- Tiempo medio entre reparaciones (MTTR)
- Índice de disponibilidad (ID) = MTFB/(MTFB + MTTR)

6.4. Técnicas de mantenimiento

Existen tres tipos básicos de mantenimiento:

- Correctivo: Trabajos sobre fallas que no son posibles de postergar debido a que afectan la operación o seguridad
- Preventivo: Reemplazo de piezas con desgaste tal que, aunque aún no han fallado, estas no pueden seguir cumpliendo su función confiablemente.
- Predictivo: Basado en todas las técnicas de monitoreo de ensayos no destructivos, así como monitoreo de las condiciones.
En cuanto a los ensayos no destructivos se puede encontrar ultrasonidos, termografía infrarroja, inspección visual, gammagrafía con radiografiado digital, réplicas metalográficas, partículas magnéticas, tintas penetrantes, ensayo de fugas, emisión acústica, ensayo de dureza, técnica electromagnética de campo remoto y técnica electromagnética a baja frecuencia. Algunos de estos se observan en la figura 75.

	3	Me	étodo de ensa	ауо		
	Ultrasonido	Rayos X	Corrientes de Eddy	Particulas magnéticas	Líquidos penetrantes	
Costo capital	medio-alto	alto	bajo-medio	medio	bajo	
Costo consumible	muy poco	alto	bajo-medio	medio	medio	
Tiempo de resultados	inmediato	prolongado	inmediato	un poco prolongado	un poco prolongado	
Efecto de la geometría	importante	importante	importante	no muy importante	no muy importante	
Problemas de acceso	importante	importante	importante	importante	importante	
Tipo del defecto	interno	bastantes	externo	externo	rotura de superficie	
Sensibilidad relativa	alta	media	alta	baja	baja	
Registro formal	costoso	estándar	costoso	inusual	inusual	
Habilidad del operador	alta	alta	media	baja	baja	
Entrenamiento del operador	importante	importante	importante	importante	1	
Necesidad de entrenamiento	alta	alta	media	baja	baja	
Portabilidad de equipos	alta	baja	alta-media	alta-media	alta	
Dependiente de la composición del material	mucho	bastante	mucho	solo magnéticos	росо	
Habilidad para automatizar	buena	bastante	buena	bastante	bastante	
Capacidades	Medición de espesor, algunas pruebas de	Medición de espesor	Medición de espesor, clasificación de	Solo defectos	Solo defectos	

Figura 75. Comparación de ensayos no destructivos según ASME Fuente: (Alderetes, 2016)

En cuanto a los ensayos no destructivos usados para predecir los tipos de falla más comunes en las calderas se tiene:

- Sobrecalentamientos: inspección visual mediante video o boroscopía, medición de espesor de óxidos y de pared mediante ultrasonido.
- Erosión: inspección visual y espesor por ultrasonido.
- Fatiga termodinámica: inspección visual, examinación radiográfica, corriente propulsada y cuantificación con UT.
- Fatiga por creep: inspección visual, examinación con partículas magnéticas húmedas fluorescentes y réplicas metalográficas.
- Corrosión: inspección visual, espesor por UT y corriente pulsada.

Área de la caldera	Muestras de tubos requeridas	Probetas para ensayos	Réplicas	Método(s) de inspección	Mecanismo de falla principal	
Sobrecalentador principal:						
Salida del (de los) cabezal(es)			x	ABCEFHK	123	
Banco(s) de tubos	x			G	1234	
Entrada del (de los) cabezal(es)			x	EHK	235	
Tubería de conexión			x	GM	235	
Sobrecalentador secundario:						
Salida del cabezal		X	X	ABCEFHK	123	
Banco(s) de tubos	x			G	1237	
Entrada del cabezal			x	EHK	123	
Atemperador				CF	125	
Tubería de conexión		x	×	GM	123	
Economizador:						
Entrada del (de los) cabezal(es)				AFK	2356	
Banco(s) de tubos	x			GL	2346	
Salida del (de los) cabezal(es)				AF	2346	
Tubos del recinto del horno	x			DGL	2345	
Recinto de paso de convección				DGL	234	
Calderín				EHJ	2356	
Cabezales de las paredes de tubos de agua				AC	23	
Paredes de tubos de agua y accesorios	x			DL	2 3	

Estos últimos se pueden apreciar en la figura 76.

(a) A - Desmontaje de la tubería del cabezal y del tapón del orificio del colector para una inspección interna. B - Medidas de las dimensiones del cabezal. C - Detección ultrasónica de defectos (rayo en ángulo). D - Radiografía. E - Líquidos penetrantes. F - Sonda de fibra óptica. G -Prueba de espesor por ultrasonido (tipo de alcance). H - Partículas magnéticas. I - Detección de aleación por campo magnético. J - Partículas magnéticas fluorecentes húmedas. K - Partículas magnéticas para tubos de fijación. L - Extracción de tubos en los accesorios. M - Monitoreo de presión (dimensionalmente).
(b) 1 - Creep (deformación por fluencia lenta). 2 - Fatiga. 3 - Corrosión. 4 - Erosión. 5 - Choque térmico. 6 - Sedimentación. 7 - Soldadura de metales diferentes (DMW)

Figura 76. Técnicas de ensayos no destructivos para cada componente de la caldera Fuente: (Alderetes, 2016)

Conclusiones

Se cumplió el objetivo principal de la tesis de diseñar y dimensionar una caldera bagacera, y en lo que respecta a la metodología realizada, que ya había sido validada por Andrade-Liviapoma (2015), se volvió a comprobar con los resultados obtenidos como por ejemplo que la temperatura de salida de los gases de combustión (de la chimenea), la cual fue asumida al inicio de los cálculos, resultó ser prácticamente la misma que la obtenida luego de los cálculos; esto es muy importante debido a que en base a esta se toman entalpías que influyen en las operaciones.

Otras razones de validación del presente proyecto son que los perfiles de temperatura obtenidos son muy parecidos a los de Alderetes (2016) y Andrade-Liviapoma (2015); obviamente que en este último difiere en las áreas de transferencia de calor, puesto a que su producción es cien veces mayor, pero cabe recalcar que tienen una relación directamente proporcional.

Al igual que la caída de temperatura de los gases de combustión, los componentes de una caldera tradicional expuestos por Alderetes (2016) y The Babcock & Wilcox Company (1992), concuerdan con los utilizados; en todo caso, a diferencia del primero, se le está añadiendo un economizador porque los gases de combustión aún tenían energía térmica aprovechable.

Volviendo a mencionarlo, se realizó una simulación de variación de parámetros en función al flujo másico de vapor producido (\dot{m}_v) en el balance energético, para así obtener gráficas y poder analizarlas. Las más interesantes son las de pérdidas por radiación (q_{rp}) , rendimiento de la caldera (η_g) y la relación vapor/bagazo $(rel_{v/b})$. La primera, a diferencia de

las otras dos, varía inversamente al flujo másico de vapor requerido puesto que este último es directamente proporcional al flujo másico de gases de combustión, lo que significaría que la convección sería el mecanismo principal de transferencia de calor, dejando a un lado a la radiación.

En cuanto al rendimiento de la caldera, se ve que es un valor cercano al valor máximo obtenible en cuanto a la variación del flujo másico de vapor, por lo que se podría decir que su rendimiento "relativo" de la caldera $(\eta_g/\eta_{g_{max}})$ sería muy bueno, además de que su rendimiento "absoluto" (η_g) de casi el 83% es muy bueno. De la misma forma se tiene que el valor de la relación vapor/bagazo, la cual relaciona la cantidad de bagazo requerido con la de vapor producido, es un valor muy cercano al máximo además de ser un valor aceptable de 1.78 aproximadamente.

En los resultados se denotó la importancia de utilizar un secador de bagazo para así disminuir su humedad, principalmente en producciones de baja capacidad con la finalidad de aumentar su rendimiento energético y másico.

Es importante mencionar que además de que los resultados son coherentes, se han utilizado valores razonables y comerciales de los materiales como son el caso de los diámetros, espesores y materiales de los tubos de los intercambiadores de calor.

La metodología utilizada presenta flexibilidad, esto quiere decir que se puede variar el tipo de combustible para otro tipo de aplicaciones, sin olvidar modificar sus valores de poder calorífico y composición molecular para los cálculos.

Vale hacer hincapié en la ventaja de utilizar el software Matlab, el cual nos simplifica mucho en el cálculo de las operaciones, siendo de fácil interacción y programado, sobre todo para las iteraciones en ecuaciones no lineales (la mayoría) y en la elaboración de gráficos.

Por último, como se ha mencionado, es esencial un plan de mantenimiento para alargar la vida útil de la caldera, pero más importante es la correcta operación de esta debido a que por más de aplicar el plan al pie de la letra, la mala manipulación podría conllevar a incidentes y accidentes no solo en la producción de panela, sino en la seguridad de las personas.

Glosario

Nomenclatura	Significado(s) y unidades
Α	Aire por unidad de combustible (kg/kg, kg/Nm ³ , Nm ³ /kg, Nm ³ /Nm ³), área de sección transversal (m ²)
а	Altura (de ventana) (m)
С	Porcentaje en masa de carbono (%)
С	Calor específico (J/kg K)
<i>D</i> , <i>d</i>	Diámetro (m)
Ε	Energía (J)
е	Exceso de aire (%)
G	Gas de combustión por unidad de combustible (kg/kg, kg/Nm ³ , Nm ³ /kg, Nm ³ /Nm ³), velocidad másica (kg/m ² s)
Н	Poder calorífico o liberación de calor del fluido (kJ/kg)
h	Entalpía (kJ/kg)
K	Factor adimensional del fluido
k	Conductividad térmica (W/m K)
l	Longitud (m)
М	Masa molar (kg/kmol)
т	masa (kg), flujo másico (kg/s), humedad (%)
Ν	Porcentaje en masa de nitrógeno (%)
Nu	Número de Nusselt
п	Índice del aire, número (en referencia a tubos, filas, pasos, etc.), relación componente/combustible (kmol/kmol)
0	Porcentaje en masa del oxígeno (%)
Р	Presión (kPa, bar, mmH ₂ O)
PCI	Poder calorífico inferior del combustible (kJ/Kg)
Pr	Número de Prandtl
Q	Calor (kJ), flujo de calor (kJ/h, W, kW)
q	Calor por unidad de masa (kJ/kg), flujo de calor por unidad de área (W/m ² , kW/m^2)
R	Ratio de circulación, resistencia térmica (m ² K/W)

Re	Número de Reynolds
r	Radio (m)
S	Superficie (m ²)
SC	Superficie de calefacción
S	Paso o espaciamiento (m)
Т	Temperatura absoluta (K)
t	Temperatura relativa (°C)
U	Coeficiente de transferencia de calor global (W/m ² K)
V	Volumen (m ³), caudal volumétrico (m ³ /s)
v	volumen específico (m ³ /kg)
W	Velocidad (m/s)
X	Fracción volumétrica o molar (kmol/kmol)
x	Espesor (m)
$\varDelta P$	Caída de presión (kPa, mmH ₂ O)
$\varDelta p$	Caída de presión (Pa)
ΔT	Variación de temperatura (K)
Δt	Variación de temperatura (°C)
α	Coeficiente de transferencia de calor (W/m ² K)
З	Emisividad, rugosidad relativa
η	Eficiencia (%)
λ	Factor de fricción en pérdidas primarias o distribuidas
ζ	Factor de fricción en pérdidas secundarias o concentradas
μ	Viscosidad dinámica (kg/ms)
ρ	Densidad (kg/m ³)
σ	Esfuerzo (N/mm ² , MPa), constante de Stefan Boltzmann (W/m ² K ⁴)
ω	Ángulo (°)

Superíndice	Significado
1	Fluido caliente
11	Fluido a calentar (o frío)
*	En base seca sin ceniza
0	En estado normal o estándar (1 atm, 298 K y 1 mol)
0	En condiciones de temperatura y presión normales o estándar (1 atm y 0°C)

Subíndice	Significado(s)
а	Aire
ad	Adiabática
ар	Aire primario
b	Bagazo
bh	Bagazo húmedo

bs	Bagazo seco
С	Carbono
CC	Cámara de combustión
С	Convección, combustible
ch	Chimenea
CZ	Ceniza
d	De diseño (presión)
ec	Economizador
evs	Evaporador secundario
f	Película (en temperaturas), frontal (en dimensiones), de formación, fluido
g	En esta gaseoso, gases de combustión
gc	Gases de combustión
Н	Hidrógeno
h	Altura
i	Interior S
in	De entrada, pulgadas
l	Longitudinal, en estado líquido, lateral
т	Masa, mezcla vapor-agua, media
N	Nitrógeno
0	Oxígeno
0	Exterior
out	De salida
р	Pasos, pérdidas, pared
pt	Pantalla
pr	Precalentador
prom	Promedio
r	Radiación, radial
ref	De referencia
S	En estado sólido
sat	De saturación (en temperaturas)
sb	Sobrecalentador
t	Tubos, teórico, transversal, total
tf	Tiro forzado
ti	Tiro inducido
v	Vapor, volumétrico (en concentración)
vg	Vapor sobrecalentado
W	Velocidad, agua
@	En referencia al estado físico (temperaturas o presiones)
1	En la entrada (para fluidos caliente y frío)
2	En la salida (para fluidos caliente y frío)

Acentos	Significado(s)
Raya (-)	En base molar (para entalpías), en base húmeda (para fracciones molares)
Punto (.)	Flujo o por unidad de tiempo

Referencias bibliográficas

Abarca, P. (2018). *Descripción de Calderas y Generadores de Vapor*. Asociación Chilena de Seguridad. Santiago: Asociación Chilena de Seguridad. Recuperado el 11 de Mayo de 2020, de

http://www.achs.cl/portal/trabajadores/Capacitacion/CentrodeFichas/Documents/descr ipcion-de-caldera-y-generadores-de-vapor.pdf

- Alderetes, C. (2016). *Calderas a Bagazo Proyecto, operación y mantenimiento* (Primera ed.). Argentina.
- Andrade-Liviapoma, C. (2015). Metodología de Diseño de un Generador de Vapor Acuotubular Bagacero. Tesis de Pregrado, Universidad de Piura, Departamento de Ingeniería Mecánico-Eléctrica, Piura. Obtenido de https://pirhua.udep.edu.pe/bitstream/handle/11042/2205/IME 184.pdf?sequence=1

Annaratone, D. (1985). Generatori di Vapore (Vol. Primo). Milano, Lombardia, Italia: Club.

- Annaratone, D. (1986). *Generatori di Vapore* (Vol. Secondo). Milano, Lombardia, Italia: Clup.
- Annaratone, D. (2008). Steam Generators. Milan, Italy: Springer.
- Babcock Wanson. (s.f.). *Chaudières vapeur Principe & Avantages*. Obtenido de Babcock Wanson: http://www.babcock-wanson.fr/produits_chaudieres_vapeur_tdfprinc.aspx#
- Campos Grijalva, A. K., Espinoza Eusebio, L. K., & López Martinez, J. M. (2013). *Calderas*. Chimbote: Universidad Nacional de Santa.
- Cengel, Y., & Boles, Y. (2012). Termodinámica (7ma ed.). McGraw-Hill.
- Cengel, Y., & Cimbala, J. (2006). *Mecánica de Fluidos: fundamentos y aplicaciones* (Primera ed.). Mexico D.F.: McGraw-Hill.
- Cengel, Y., & Ghajar, A. (2011). *Tranferencia de calor y masa: fundamentos y aplicaciones* (Cuarta ed.). Mexico DF: McGraw-Hill.
- Crane. (1988). *Flujo de fluidos en válvulas, accesorios y tuberías*. (S. VALFISA, Trad.) Mexico: McGraw-Hill.
- Díaz, R. (2008). *Caracterización Energética del Bagazo de Caña de Azúcar del Ingenio Valdez, Ecuador.* Curso Internacional "PRODUCCIÓN Y APROVECHAMIENTO

ENERGÉTICO DE BIOMASA", Escuela Superior Politécnica de Chimborazo, Facultad de Mecánica, Riobamba. Obtenido de https://www.lippel.com.br/Assets/Downloads/16-07-2014-15-41caracterizacion-delbagazo-de-cana-de-azucar.pdf

- Emoscopes. (10 de Febrero de 2006). *Water tube boiler schematic*. Recuperado el 14 de Junio de 2020, de Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Water tube boiler schematic.png
- Energías Industriales. (s.f.). *Nuestras Calderas Industriales*. Recuperado el Junio de 2018, de Energías Industriales: http://www.energiasindustriales.cl/galeria detalle.php?contenido=31
- Escobar, G., & Duvisón, M. (2012). *Eficiencia Energética*. Universidad Computense de Madrid. Madrid: Escuela de Organización Industrial. Recuperado el 22 de Agosto de 2020, de

https://www.google.com/search?q=Escuela+de+Organizaci%C3%B3n+Industrial&oq =Escuela+de+Organizaci%C3%B3n+Industrial&aqs=chrome..69i57j0l5j46j0.514j0j4 &sourceid=chrome&ie=UTF-8

- Estrucplan Consultora S.A. (24 de Noviembre de 2011). *Aparatos Sometidos a Presión*. Obtenido de Estrucplan: http://www.estrucplan.com.ar/Producciones/entrega.asp?IdEntrega=2953
- Fernández Díez, P. (2010). *Centrales térmicas*. Obtenido de Libros sobre ingeniería energética: https://pfernandezdiez.es/es/libro?id=15
- Franck Colombres, F., Golato, M., Morales, W., Cruz, C., & Paz, D. (2011). Rendimiento Térmico de Calderas Bagaceras Modernas en Tucumán, R. Argentina. *Revista Industrial y Agrícola de Tucuman*, 88. Recuperado el 19 de Mayo de 2018, de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-30182011000200005
- Fygueroa Salgado, S. J., Serrano Rico, J. C., & Molina Mojica, J. R. (2012). Método para determinar las propiedades termodinámicas de mezclas combustibles considerando doce especies químicas en los productos. *Ingeniería y Universidad, XVI*(1), 59-75. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-21262012000100004
- Gordillo, G., & García, H. (1992). *Manual para el Diseño y Operación de Hornillas Paneleras*. Barbosa.
- Grace's Guide To British Industrial History. (12 de Junio de 2019). *W. and J. Galloway and Sons*. Obtenido de Grace's Guide To British Industrial History: https://www.gracesguide.co.uk/W._and_J._Galloway_and_Sons
- Hernández, H. (2 de Junio de 2016). *Fallas de Mantenimiento*. Recuperado el 04 de Mayo de 2020, de Prezi: https://prezi.com/-t1jdfnxd6c9/tipos-de-fallas-de-mantenimiento/
- Hugot, E. (1986). *Handbook of Cane Sugar Engineering* (Tercera ed.). Nueva York, Estados Unidos: ELSEVIER.

Kohan, A. (2000). Manual de Calderas (Vol. I). Madrid: McGraw-Hill.

- Mitre Engenharia Ltda. (2008). Caldeira Mitre MPB-100 Data Sheet.
- National Energy Conservation Centre. (2014). *Improving steam boiler operating eficency*. Islamabad, Pakistan: ENERCON.
- Nelly. (3 de Abril de 2020). *Ejemplos de tipos de calderas*. Obtenido de Solo Ejemplos: https://www.soloejemplos.com/ejemplo-de-tipos-de-calderas/
- Pons Muzzo, G. (1975). *Fisicoquímica: curso básico para las profesiones científicas* (Tercera ed.). Lima, Perú: Editorial Universo S.A.
- Sánchez, A. (17 de Febrero de 2016). *Caldera Acuotubular*. Obtenido de Blogspot: http://calacutubular.blogspot.pe/2016/02/caldera-acuotubular.html
- Severns, W., & Miles, J. (1982). *La produccioón de energía mediante el vapor, aire o gas.* Barcelona: Reverté.
- Shield, C. (1979). Boilers: Types, charateristics and functions. Michigan: McGraw-Hill.
- Sitong Boiler Company. (2014). *Sitong Boiler Company*. Recuperado el 28 de Agosto de 2020, de DZH Bagasse & Rice Husk Fired Boiler: https://www.sitong-boiler.com/product/biomass-fuel-boiler/dzh-bagasse-rice-husk-fired-boiler.html
- Soler Preciado, F. (11 de Mayo de 2013). *Circulación natural en calderas acuotubulares*. Obtenido de Calderas Marinas: http://calderasmarinas.blogspot.com/2013/05/circulacion-natural-en-calderas.html
- Soluciones Energéticas. (s.f.). *Economizadores*. Obtenido de Soluciones Energéticas: http://calderasyenergia.com/tecnologias/economizadores/
- Susana. (2015 de Setiembre de 2015). *Curva de calentamiento del agua*. Obtenido de Blogspot: http://quimicatandil.blogspot.pe/2012/10/curva-de-calentamiento-del-agua.html
- The Babcock & Wilcox Company. (1992). *Steam is generation and use* (Cuadragésima ed.). (S. Stultz, Ed.) Barberton, Ohio, Estados Unidos: The Babcock & Wilcox Company.
- TSI Inc. (2004). *Combustion Analysis Basics*. Retrieved from DOCPLAYER: https://docplayer.net/11308287-Combustion-analysis-basics.html

Anexos

Anexo 1. Coeficientes de calor específico y entalpía

TABLA A-2

Calores específicos de gas ideal de varios gases comunes (*conclusión*) c) Como una función de la temperatura

			$\overline{C}_p = a$	$+ bT + cT^2 + dT^3$						
(T en K, c _p en kJ/kmol · K)										
						Rango de	% de	e error		
Sustancia	Fórmula	а	b	С	d	temp., K	Máx.	Prom.		
Acetileno	C2H2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59		
Aire		28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33		
Amoniaco	NH ₃	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36		
Azufre	S ₂	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273-1800	0.99	0.38		
Benceno	CeHe	-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20		
i-Butano	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13		
n-Butano	C4H10	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24		
Cloruro de										
hidrógeno Dióxido de	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08		
azufre	SOz	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24		
Dióxido de										
carbono	CO2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22		
Dióxido de	10020	1212121	100100121000121004			122202222	22012121	112112121		
nitrógeno	NOz	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18		
Etano	C ₂ H ₆	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28		
Etanol	C2H60	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22		
Etileno	C ₂ H ₄	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13		
n-Hexano	C6H14	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20		
Hidrógeno	Hz	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273-1800	1.01	0.26		
Metano	CH4	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57		
Metanol Monóxido de	CH40	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08		
carbono	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273-1800	0.89	0.37		
Nitrógeno	N ₂	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34		
Óxido nítrico	NO	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36		
Óxido nitroso	N-O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273-1500	0.59	0.26		
Oxígeno	0-	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28		
n-Pentano	C-Han	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21		
Propano	C-H-	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12		
Propileno	C _o H _c	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273-1500	0.73	0.17		
Trióxido de	03.16		20.00 / 10	12.10 / 10	21.02 1. 10	270 1000	0.70			
azufre	SO3	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13		
Agua (vapor)	HzO	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24		

Fuente: B. G. Kyle, Chemical and Process Thermodynamics, Englewood Cliffs, Nueva Jersey, Prentice Hall, 1984. Usada con permiso.

Anexo 2. Tablas termodinámicas de agua saturada

TABLA A-4

Agua s	Agua saturada. Tabla de temperaturas											
		Volume	n específico, m ³ /kg	E	nergía in kJ/kg	terna, ?		Entalpía, kJ/kg			Entropía kJ/kg · k	, (
Temp., <i>T</i> °C	Pres. sat., <i>P_{sat}</i> kPa	Líq. sat., _{Vf}	Vapor sat., v _g	Líq. sat., <i>u_f</i>	Evap., <i>u_{fg}</i>	Vapor sat., <i>u_g</i>	Líq. sat., <i>h_f</i>	Evap., h _{fg}	Vapor sat., <i>h_g</i>	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., <i>s_g</i>
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313	7.0769	7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	6.9773
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	6.7927
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	6.7492
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923	4.7143	6.7067
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	6.6650
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875	4.3572	6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355	4.2705	6.5059
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831	4.1847	6.4678
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8	2792.0	2.3305	4.0997	6.4302

-		-			
	n	D	Λ.	•	_
	н	n	н	- 14	-4
		-			

Agua saturada. Tabla de temperaturas (conclusión)

		Volumen específico, m ³ /kg		E	Energía interna, kJ/kg			Entalpía, kJ/kg			Entropía, kJ/kg · K		
Temp.,	Pres. sat.,	Líq. sat,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	874.87 897.61 920.50 943.55 966.76	1920.0 1899.7 1878.8 1857.4 1835.4	7g 2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	4.0154 3.9318 3.8489 3.7664 3.6844	6.3930 6.3563 6.3200 6.2840 6.2483	
230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9	990.14	1812.8	2802.9	2.6100	3.6028	6.2128	
235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	1789.5	2803.2	2.6560	3.5216	6.1775	
240	3347.0	0.001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.0	2.7018	3.4405	6.1424	
245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476	3.3596	6.1072	
250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.7933	3.2788	6.0721	
255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390	3.1979	6.0369	
260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.6	2.8847	3.1169	6.0017	
265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304	3.0358	5.9662	
270	5503.0	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762	2.9542	5.9305	
275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221	2.8723	5.8944	
280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1236.7	1543.2	2779.9	3.0681	2.7898	5.8579	
285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144	2.7066	5.8210	
290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2.6225	5.7834	
295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	5.7450	
300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.6	3.2548	2.4511	5.7059	
305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3633	5.6657	
310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243	
315	10,556	0.001472	0.016849	1416.1	1121.1	2537.2	1431.6	1283.4	2715.0	3.3994	2.1821	5.5816	
320	11,284	0.001499	0.015470	1445.1	1080.9	2526.0	1462.0	1238.5	2700.6	3.4491	2.0881	5.5372	
325	12,051	0.001528	0.014183	1475.0	1038.5	2513.4	1493.4	1191.0	2684.3	3.4998	1.9911	5.4908	
330	12,858	0.001560	0.012979	1505.7	993.5	2499.2	1525.8	1140.3	2666.0	3.5516	1.8906	5.4422	
335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1086.0	2645.4	3.6050	1.7857	5.3907	
340	14,601	0.001638	0.010783	1570.7	893.8	2464.5	1594.6	1027.4	2622.0	3.6602	1.6756	5.3358	
345	15,541	0.001685	0.009772	1605.5	837.7	2443.2	1631.7	963.4	2595.1	3.7179	1.5585	5.2765	
350	16,529	0.001741	0.008806	1642.4	775.9	2418.3	1671.2	892.7	2563.9	3.7788	1.4326	5.2114	
355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442	1.2942	5.1384	
360	18,666	0.001895	0.006950	1726.2	625.7	2351.9	1761.5	720.1	2481.6	3.9165	1.1373	5.0537	
365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004	0.9489	4.9493	
370	21,044	0.002217	0.004953	1844.5	385.6	2230.1	1891.2	443.1	2334.3	4.1119	0.6890	4.8009	
373.95	22,064	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070	

Fuente: Las tablas A-4 a A-8 fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la altamente precisa Steam_IAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Agua Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación reemplaza a la formulación de 1984 de Haar, Gallagher y Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se basa en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K a 473.15 K", *ASHRAE Trans.*, Part 2A, Paper 2793, 1983.

Anexo 3. Tablas termodinámicas de vapor sobrecalentado

TABLA	A-6											
Vapor o	le agua sob	recalent	ado									
Т	v	u	h	s	v	u	h	s	v	u	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K
	P =	0.01 MP	a (45.81)	°C)*	P =	0.05 MP	a (81.32°	C)	P =	0.10 MP	a (99.61	°C)
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741	0.4107	0511.5		7.0000	1.0050	0506.0	0075.0	7.0611
100	17.196	2515.5	2687.5	8.4489	3.418/	2511.5	2682.4	7.6953	1.6959	2506.2	26/5.8	7.3611
200	19.513	2587.9	2/83.0	8 00/0	3.8897	2585.7	2780.2	7.9413 8 1502	2 1724	2082.9	2776.6	7 8256
250	24.136	2736.1	2977.5	9,1015	4.3302	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.7800
1100	08./08 62.272	4055.3	4642.8	11.0429	12,6745	4055.2	4642.7	10.3000	5.8/55	4055.0	4642.6	9.9800
1200	67 989	4200.0	5150.8	11 4132	13 5977	4239.9	5150.7	10.4057	6 7988	4239.8	5150.6	10.1098
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P =	0.20 MP	a (120.2	1°C)	P =	0.30 MPa	(133.52	°C)	P =	0.40 MPa	a (143.61	°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	3 2564.4	2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520	2726.4	2964.5	7.3804
300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037	0.65489	2805.1	3067.1	7.5677
400	1.54934	2967.2	32/7.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	2964.9	32/3.9	7.9003
600	2 01202	3131.4	3487.7	8.0103	1.18672	3130.6	3486.6	8.5271	1.00559	2 2 2 0 1 0	3485.5	8,1933
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152	3479.0	3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730	3663.9	4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298	3855.7	4396.9	9.1394
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.3396
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1200	3.39938	4470.5	5150.4	10.0304	2.26624	4470.3	5150.2	9.8431	1.69966	5 4470.2	5150.0	9.7102
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	6 4686.7	5412.8	9.8828
	P = 0.50 MPa (151.83°C)			3°C)	P = 0.60 MPa (158.83°C)				P = 0.80 MPa (170.41°C)			
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	5 2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.26088	2631.1	2839.8	6.81//
200	0.47443	2803.3	2961.0	7.614	0.39390	2721.2	2957.6	7 37/0	0.29321	2715.9	2950.4	7.0402
350	0.52201	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7 5481	0.32410	28786	3162.2	7 4107
400	0.61731	2963.7	3272.4	7.7956	0.51374	2962.5	3270.8	7.7097	0.38429	2960.2	3267.7	7.5735
500	0.71095	3129.0	3484.5	8.0893	0.59200	3128.2	3483.4	8.0041	0.44332	3126.6	3481.3	7.8692
600	0.80409	3300.4	3702.5	8.3544	0.66976	3299.8	3701.7	8.2695	0.50186	3298.7	3700.1	8.1354
700	0.89696	3478.6	3927.0	8.5978	0.74725	3478.1	3926.4	8.5132	0.56011	3477.2	3925.3	8.3794
800	0.98966	3663.6	4158.4	8.8240	0.82457	3663.2	4157.9	8.7395	0.61820	3662.5	4157.0	8.6061
900	1.08227	3855.4	4396.6	9.0362	0.90179	3855.1	4396.2	8.9518	0.67619	3854.5	4395.5	8.8185
1000	1.17480	4054.0	4641.4	9.2364	0.97893	4053.8	4641.1	9.1521	0.73411	4053.3	4640.5	9.0189
1100	1.26/28	4259.0	4892.6	9.4263	1.05603	4258.8	4892.4	9.3420	0.79197	4258.3	4891.9	9.2090
1200	1.359/2	4470.0	5149.8	9.60/1	1.13309	4469.8	5149.6	9.5229	0.84980	AC8C 1	5149.3	9.3898
1300	1.40214	4060.0	0412.6	9.7797	1.21012	4000.4	0412.5	9.0900	0.90761	4060.1	0412.2	9.0620

*La temperatura entre paréntesis es la temperatura de saturación a la presión especificada.

[†] Propiedades del vapor saturado a la presión especificada.

TADLA A-0	

T v u h s v u h s v u °C m³/kg kJ/kg kJ/kg kJ/kg ·K m³/kg kJ/kg kJ/kg kJ/kg ·K m³/kg kJ	h s J/kg kJ/kg kJ/kg⋅			
°C m ³ /kg kJ/kg kJ/kg kJ/kg ·K m ³ /kg kJ/kg kJ/kg ·K m ³ /kg kJ	J/kg kJ/kg kJ/kg·			
P = 1.00 MPa (179.88 °C) P = 1.20 MPa (187.96 °C) P = 1.	P = 1.40 MPa (195.04 °C)			
Sat. 0.19437 2582.8 2777.1 6.5850 0.16326 2587.8 2783.8 6.5217 0.14078 25	591.8 2788.9 6.4675			
200 0.20602 2622.3 2828.3 6.6956 0.16934 2612.9 2816.1 6.5909 0.14303 26	602.7 2803.0 6.4975			
250 0.23275 2710.4 2943.1 6.9265 0.19241 2704.7 2935.6 6.8313 0.16356 26	698.9 2927.9 6.7488			
300 0.25799 2793.7 3051.6 7.1246 0.21386 2789.7 3046.3 7.0335 0.18233 27	785.7 3040.9 6.9553			
350 0.28250 2875.7 3158.2 7.3029 0.23455 2872.7 3154.2 7.2139 0.2029 28	869.7 3150.1 7.1379			
400 0.30661 2957.9 3264.5 7.4670 0.25482 2955.5 3261.3 7.3793 0.21782 29	953.1 3258.1 7.3046			
500 0.35411 3125.0 3479.1 7.7642 0.29464 3123.4 3477.0 7.6779 0.25216 31	121.8 3474.8 7.6047			
600 0.40111 3297.5 3698.6 8.0311 0.33395 3296.3 3697.0 7.9456 0.28597 32	295.1 3695.5 7.8730			
700 0.44783 3476.3 3924.1 8.2755 0.37297 3475.3 3922.9 8.1904 0.31951 34	474.4 3921.7 8.1183			
800 0.49438 3661.7 4156.1 8.5024 0.41184 3661.0 4155.2 8.4176 0.35288 36	660.3 4154.3 8.3458			
900 0.54083 3853.9 4394.8 8.7150 0.45059 3853.3 4394.0 8.6303 0.38614 38	852.7 4393.3 8.5587			
1000 0.58721 4052.7 4640.0 8.9155 0.48928 4052.2 4639.4 8.8310 0.41933 40	051.7 4638.8 8.7595			
1100 0.63354 4257.9 4891.4 9.1057 0.52792 4257.5 4891.0 9.0212 0.45247 42	257.0 4890.5 8.9497			
1200 0.67983 4469.0 5148.9 9.2866 0.56652 4468.7 5148.5 9.2022 0.48558 44	468.3 5148.1 9.1308			
1300 0.72610 4685.8 5411.9 9.4593 0.60509 4685.5 5411.6 9.3750 0.51866 46	685.1 5411.3 9.3036			
P = 1.60 MPa (201.37 °C) P = 1.80 MPa (207.11 °C) P = 2.0	.00 MPa (212.38 °C)			
Sat. 0.12374 2594.8 2792.8 6.4200 0.11037 2597.3 2795.9 6.3775 0.09959 2	2599.1 2798.3 6.3390			
225 0.13293 2645.1 2857.8 6.5537 0.11678 2637.0 2847.2 6.4825 0.10381 2	2628.5 2836.1 6.4160			
250 0.14190 2692.9 2919.9 6.6753 0.12502 2686.7 2911.7 6.6088 0.11150 2	2680.3 2903.3 6.547			
300 0.15866 2781.6 3035.4 6.8864 0.14025 2777.4 3029.9 6.8246 0.12551 2	2773.2 3024.2 6.7684			
350 0.17459 2866.6 3146.0 7.0713 0.15460 2863.6 3141.9 7.0120 0.13860 2	2860.5 3137.7 6.9583			
400 0.19007 2950.8 3254.9 7.2394 0.16849 2948.3 3251.6 7.1814 0.15122 2	2945.9 3248.4 7.1292			
500 0.22029 3120.1 3472.6 7.5410 0.19551 3118.5 3470.4 7.4845 0.17568 3	3116.9 3468.3 7.433			
600 0.24999 3293.9 3693.9 7.8101 0.22200 3292.7 3692.3 7.7543 0.19962 3	3291.5 3690.7 7.7043			
700 0.27941 3473.5 3920.5 8.0558 0.24822 3472.6 3919.4 8.0005 0.22326 3	34/1./ 3918.2 /.9509			
800 0.30865 3659.5 4153.4 8.2834 0.27426 3658.8 4152.4 8.2284 0.24674 3	3658.0 4151.5 8.1/9			
900 0.33780 3852.1 4392.6 8.4965 0.30020 3851.5 4391.9 8.4417 0.27012 3	3850.9 4391.1 8.392			
1000 0.3668/ 4051.2 4638.2 8,69/4 0.32606 4050.7 4637.6 8,6427 0.29342 4	4050.2 4637.1 8.5936			
1100 0.39589 4256.6 4890.0 8.8878 0.35188 4256.2 4889.6 8.8331 0.31667 4	4255.7 4889.1 8.7842			
1200 0.42488 4467.9 5147.7 9.0689 0.37765 4467.6 5147.3 9.0143 0.33989 4	4467.2 5147.0 8.9654			
1300 0.45383 4684.8 5410.9 9.2418 0.40341 4684.5 5410.6 9.1872 0.36308 4	4684.2 5410.3 9.1384			
$P = 2.50 \text{ MPa} (223.95 \degree\text{C})$ $P = 3.00 \text{ MPa} (233.85 \degree\text{C})$ $P = 3.00 \text{ MPa} (233.85 \degree\text{C})$.50 MPa (242.56 °C)			
Sat. 0.07995 2602.1 2801.9 6.2558 0.06667 2603.2 2803.2 6.1856 0.05706 2	2603.0 2802.7 6.124			
223 0.00020 2004.0 2003.0 0.2029 250 0.007050 2053 0.02029	0004.0 0800.7 0 170			
200 0.08/05 26533 2880.9 5.410/ 0.0/053 2644.7 2856.5 5.2893 0.058/6 2 200 0.09904 3763 2000 6 6.450 0.09119 3750.9 2004 5 6410 0.068/5 5	2624.0 2829.7 6.1764			
300 0.09694 2762.2 3009.6 6.6439 0.06116 2750.6 2994.3 6.3412 0.06645 2 350 0.10070 3852 5 3137 0 5 8034 0.00055 384.4 31151 5 7450 0.07590 3	2/30.0 29/0.4 0.4404 2926.0 210/0 6.6601			
400 010019 2020 8 2041 7 0170 0.00038 2032 6 2017 6 0255 0.08455 2	2030.0 3104.9 0.000			
460 0.12012 2022 0 2240.1 7.0170 0.0336 233.0 323.1 0.225 0.00450 2	20161 22291 7007			
450 0.15015 5026.2 5551.6 7.1766 0.10767 5021.2 5544.3 7.0656 0.09156 5 500 0.12000 21129 2425 7 2554 0.11220 2108 2467 2 7.2550 0.00010 2	2104 5 2451 7 7 150			
500 0.15555 5112.6 5462.6 7.5254 0.11620 5106.6 3457.2 7.2555 0.05515 5 600 0.15631 3288 5 3686 8 7.5670 0.13245 3285 5 3682 8 7.5103 0.11325 3	30805 36780 7/35			
	3464.7 3909 3 7 685			
800 0.19722 3656.2 4149.2 8.0744 0.16420 3654.3 4146.9 7.9885 0.14061 3	3652.5 4144.6 7.9156			
900 0.21597 3849.4 4389.3 8.2882 0.17988 3847.9 4387.5 8.2028 0.15410 3	3846.4 4385.7 8 130/			
1000 0.23466 4049.0 4635.6 8.4897 0.19549 4047.7 4634.2 8.4045 0.16751 4	4046.4 4632.7 8.3324			
1100 0.25330 4254.7 4887.9 8.6804 0.21105 4253.6 4886.7 8.5955 0.18087 4	4252.5 4885.6 8.5236			
1200 0.27190 4466.3 5146.0 8.8618 0.22658 4465.3 5145.1 8.7771 0.19420 4	4464.4 5144.1 8.7053			
1300 0.29048 4683.4 5409.5 9.0349 0.24207 4682.6 5408.8 8.9502 0.20750 4	4681.8 5408.0 8.8786			

TABLA A-6

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vapor	Vapor de agua sobrecalentado (<i>continuación</i>)											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Т	V	U.	h	s	V	U.	h	s	V	II.	h	s
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
$ \begin{array}{c} \text{st.} 0.04978 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		P	= 4.0 MP	a (250.35	°C)	P	= 4.5 MPa	(257.44	°C)	P = 5.0 MPa (263.94 °C)			
$ \begin{array}{c} 275 \\ 0.05461 \\ 268.9 \\ 287.4 \\ 0.0637 \\ 280.7 \\ 280.7 \\ 280.5 \\ 292.5$	Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
$ \begin{array}{c} 300 & 0.05887 & 272.6 & 2961.7 & 6.3639 \\ 0.05138 & 2713.0 & 2944.2 & 6.2854 \\ 0.06197 & 280.9 & 306.9 & 3.64516 \\ 0.0734 & 290.8 & 3214.5 & 6.7714 \\ 0.06477 & 2914.2 & 300.5 & 6.7071 \\ 0.0632 & 200.7 & 5.196.7 & 6.483 \\ 0.0864 & 310.0 & 331.2 & 6.938 \\ 0.07075 & 0.0868 & 3274.2 & 6.8770 \\ 0.0864 & 310.0 & 331.2 & 6.938 \\ 0.07652 & 3096.0 & 3440.4 & 7.0322 \\ 0.07870 & 273.3 & 666.9 & 7.2605 \\ 0.01086 & 3279.4 & 3674.9 & 7.3706 \\ 0.08766 & 3276.4 & 3670.9 & 7.3127 \\ 0.01108 & 3442.4 & 390.6 & 7.6214 \\ 0.09860 & 3462.4 & 390.6 & 7.6214 \\ 0.09860 & 3462.4 & 390.6 & 7.6214 \\ 0.09860 & 3462.4 & 390.6 & 7.6214 \\ 0.01252 & 3650.6 & 4142.3 & 7.8523 \\ 0.11091 & 3443.3 & 483.1 & 80.118 \\ 0.11252 & 3650.6 & 4142.3 & 7.8523 \\ 0.11091 & 3443.3 & 483.1 & 80.118 \\ 0.11265 & 4045.1 & 4631.2 & 8.2698 \\ 0.13020 & 4043.9 & 4629.4 & 821.4 \\ 0.11715 & 4042.6 & 4628.3 & 8.164 \\ 0.11815 & 4045.1 & 4631.2 & 8.2698 \\ 0.13020 & 4043.9 & 4629.4 & 821.4 \\ 0.11815 & 4042.6 & 4628.3 & 8.1648 \\ 0.1610 & 0.15824 & 4251.4 & 4884.4 & 8.461.0 \\ 0.16140 & 4680.1 & 5406.5 & 8.7616 \\ 0.14527 & 4679.3 & 5405.7 & 8.7124 \\ \hline P = 6.0 MPa (275.59 °C) \\ P = 7.0 MPa (285.83 °C) \\ P = 7.0 MPa (285.83 °C) \\ P = 8.0 MPa (295.01 °C) \\ P = 6.0 MPa (295.01 °C) \\ P = 7.0 MPa (285.83 °C) \\ P = 8.0 MPa (295.01 °C) \\ P = 0.0 MPa (295.01 °C) \\ $	275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
$ \begin{array}{c} 400 & 0.0743 & 292.08 & 321.4.5 & 6.7714 & 0.06477 & 291.4 & 3205.7 & 6.7071 & 0.05382 & 2007.5 & 3196.7 & 6.6483 \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483
$ \begin{array}{c} 500 & 0.0864 & 3100.3 & 3446.0 & 7.0922 \\ 500 & 0.0986 & 3279.4 & 3674.9 & 7.370 & 0.0876 & 3276.4 & 3670.9 & 7.3127 & 0.08780 & 3273.3 & 366.9 & 7.265 \\ 700 & 0.11292 & 3650.6 & 4142.3 & 7.8523 & 0.0986 & 3640.0 & 3903.3 & 7.5647 & 0.08852 & 3457.7 & 3900.3 & 7.5136 \\ 900 & 0.13476 & 3844.8 & 4383.9 & 8.0675 & 0.11972 & 3843.8 & 4140.0 & 7.7962 & 0.09816 & 3664.9 & 4137.7 & 7.7458 \\ 900 & 0.13476 & 3844.8 & 4383.9 & 8.0675 & 0.11972 & 3843.8 & 4180.0 & 1.0175 & 93841.8 & 4380.2 & 7.8619 \\ 900 & 0.1453 & 4045.1 & 4631.2 & 8.2698 & 0.13020 & 4043.9 & 4629.8 & 8.2144 & 0.01759 & 3841.8 & 4380.2 & 7.8619 \\ 9100 & 0.16824 & 4251.4 & 4884.4 & 8.4612 & 0.14064 & 4250.4 & 4883.2 & 8.4060 & 0.12655 & 4249.3 & 4882.1 & 8.3566 \\ 1200 & 0.16992 & 4463.5 & 5143.2 & 8.6430 & 0.16140 & 4680.1 & 5406.5 & 8.7616 & 0.14527 & 4461.6 & 5141.3 & 8.5388 \\ 1300 & 0.18157 & 4680.9 & 5407.2 & 8.8164 & 0.16140 & 4680.1 & 5406.5 & 8.7616 & 0.14527 & 4461.6 & 5141.3 & 8.5386 \\ 0.03245 & 2589.9 & 2784.6 & 5.8902 & 0.027378 & 2581.0 & 2772.6 & 5.8148 & 0.023525 & 2750.5 & 2758.7 & 5.7450 \\ 0.03245 & 2589.9 & 3734.6 & 5.8920 & 0.027378 & 2581.0 & 2712.6 & 5.8148 \\ 0.03245 & 2790.4 & 3043.9 & 6.3357 & 0.032562 & 2770.1 & 016.9 & 6.233 & 0.033414 & 2864.6 & 3139.4 & 6.3658 \\ 0.04527 & 290.4 & 303.9 & 5.357 & 0.035262 & 2770.1 & 316.9 & 6.233 & 0.038144 & 2864.6 & 3139.4 & 6.3658 \\ 0.05667 & 3081.1 & 3423.1 & 6.8826 & 0.048157 & 3074.3 & 3411.4 & 6.8000 & 0.044172 & 3065.4 & 3395.5 & 6.7266 \\ 0.06527 & 3267.2 & 3658.8 & 7.163 & 0.05665 & 3261.0 & 3650.6 & 7.0910 & 0.04863 & 3254.7 & 3642.4 & 7.0221 \\ 0.004862 & 3383.8 & 4376.6 & 7.8711 & 0.05265 & 3261.0 & 3650.6 & 7.0910 & 0.048463 & 3254.7 & 3642.4 & 7.0221 \\ 0.004892 & 5383.2 & 433.1 & 7.6820 & 0.09865 & 3357.4 & 3375.4 & 5.5836 & 0.061011 & 3657.4 & 1328 & 5.1858 \\ 0.005161 & 3443.2 & 4376.6 & 7.8718 & 0.01877 & 4374.3 & 1.8820 & 0.079025 & 424.2 & 8475.0 & 8.1350 \\ 0.026489 & 2584.5 & 2742.9 & 5.671 & 0.018028 & 5454.2 & 7.255 & 5.6159 & 0.0618422 & 3445.6 & 3384.2 & 4.765.8 & 338$	450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
$ \begin{array}{c} 600 & 0.09886 & 3279.4 & 3674.9 & 7.3706 \\ 0.0198 & 3462.4 & 3963 & 7.5214 \\ 0.09886 & 3460.0 & 3903.3 & 7.564 \\ 0.08862 & 3457.7 & 3900.3 & 7.5136 \\ 0.01292 & 3650.6 & 4142.3 & 7.8523 \\ 0.01916 & 3648.8 & 4140.0 & 7.7962 \\ 0.09816 & 3646.9 & 4137.7 & 7.7488 \\ 0.00 & 0.1455 & 40451.4 & 4531.2 & 8.2698 \\ 0.13020 & 4043.9 & 4829.8 & 8.1018 \\ 0.10759 & 3841.8 & 4380.2 & 7.9619 \\ 0.015824 & 4251.4 & 4884.4 & 8.4612 \\ 0.16164 & 4250.4 & 4883.2 & 8.406 \\ 0.1592 & 4463.5 & 5143.2 & 8.6430 \\ 0.15103 & 4462.6 & 5142.2 & 8.5880 \\ 0.13592 & 4461.6 & 5141.3 & 8.5388 \\ 0.18157 & 4680.9 & 5407.2 & 8.8164 \\ 0.16140 & 4680.1 & 5406.5 & 8.7616 \\ 0.14527 & 4679.3 & 5405.7 & 8.7124 \\ \hline P = 6.0 MPa (275.9 °C) \\ P = 7.0 MPa (285.83 °C) \\ P = 7.0 MPa (235.2 & 579.3 & 7.7456) \\ 0.024275 & 2790.4 & 3043.9 & 6.3357 \\ 0.03245 & 2589.9 & 2784.6 & 5.8902 \\ 0.024275 & 2790.4 & 3043.9 & 6.3357 \\ 0.03256 & 2770.1 & 3016.9 & 6.2305 \\ 0.024275 & 2790.4 & 3043.9 & 6.3357 \\ 0.03562 & 2770.1 & 3016.9 & 6.2305 \\ 0.05667 & 3083.1 & 3423.1 & 6.8826 \\ 0.048187 & 2979.0 & 328.8 & 6.6353 \\ 0.038194 & 2967.8 & 3273.3 & 6.5799 \\ 0.005667 & 3083.1 & 3423.1 & 6.8826 \\ 0.048187 & 2979.0 & 328.8 & 6.6353 \\ 0.038194 & 2967.8 & 3273.3 & 6.5799 \\ 0.005667 & 3083.1 & 423.1 & 6.8826 \\ 0.06102 & 3175.2 & 3641.3 & 7.0308 \\ 0.051966 & 3167.9 & 3331.4 & 6.9507 \\ 0.07355 & 345.0 & 3843.3 & 7.427 \\ 0.062856 & 3369.5 & 4128.5 & 7.5836 \\ 0.06102 & 3175.2 & 3643.8 & 7.1639 \\ 0.051966 & 3167.9 & 3331.4 & 6.8907 \\ 0.048163 & 3264.7 & 3264.2 & 7.2822 \\ 0.00 & 0.05667 & 3083.1 & 4.2247 \\ 0.022484 & 4247.1 & 4879.7 & 8.2709 \\ 0.08465 & 3438.8 & 37.66 & 7.0710 \\ 0.044863 & 3254.7 & 3562.8 & 7.1639 \\ 0.051966 & 3137.9 & 5.7836 \\ 0.06102 & 3175.2 & 3513.4 & 6.8760 \\ 0.024284 & 3436.4 & 3150 \\ 0.022484 & 4367.1 & 8.776 & 0.03871 & 4037.5 & 4525.8 & 0.055 \\ 0.073079 & 4035.0 & 4195.9 & 7.4272 \\ 0.00 & 0.05667 & 3285.7 & 4569.9 & 7.472.8 & 7.1836 \\ 0.003424 & 447.1 & 4879.7 & 8.270 \\ 0.003484 & 3254.7 & 3596.0 & 8.477.4 & 8.1982 \\ 0.003484 & 3456.1 & 5.1356 \\ 0.003739 & 3265$	500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.2605
$ \begin{array}{c} 800 & 0.12292 & 3650.6 & 4142.3 & 7.8523 \\ 000 & 0.14673 & 4344.8 & 4383.9 & 8.0675 & 0.11972 & 3843.3 & 4382.1 & 8.018 & 0.07861 & 3646.9 & 4137.7 & 7.7458 \\ 1000 & 0.1653 & 4045.1 & 4531.2 & 8.2698 & 0.13020 & 4043.9 & 4259.8 & 8.2144 & 0.11715 & 4042.6 & 4628.3 & 8.1648 \\ 1010 & 0.15824 & 4251.4 & 4884.4 & 8.4612 & 0.14064 & 4250.4 & 4883.2 & 8.4060 & 0.13592 & 4461.6 & 5141.3 & 8.5388 \\ 1000 & 0.1857 & 4680.9 & 5407.2 & 8.8164 & 0.16103 & 4462.6 & 5142.2 & 8.8880 & 0.13592 & 4461.6 & 5141.3 & 8.5388 \\ 1010 & 0.1692 & 4463.5 & 5143.2 & 8.8164 & 0.16140 & 4680.1 & 5406.5 & 8.7616 & 0.14527 & 4759.3 & 5405.7 & 8.7124 \\ \hline P = 6.0 MPa (275.59 & P = 7.0 MPa (285.83 & C) & P = 8.0 MPa (295.01 & C) \\ \text{Sat.} & 0.03245 & 2589.9 & 2784.6 & 5.8902 & 0.027378 & 2581.0 & 2772.6 & 5.8148 & 0.023525 & 2570.5 & 2758.7 & 5.7450 \\ 0.04225 & 2790.4 & 3043.9 & 6.3357 & 0.032622 & 2770.1 & 3016.9 & 6.2305 & 0.034344 & 2864.6 & 139.4 & 6.3658 \\ 0.06102 & 3175.2 & 3541.3 & 7.0308 & 0.051966 & 3167.9 & 3511.6 & 6.5507 & 0.034344 & 2864.6 & 139.4 & 6.3658 \\ 0.06102 & 3175.2 & 3541.3 & 7.0308 & 0.051966 & 3167.9 & 3531.6 & 6.5507 & 0.045172 & 3160.5 & 3521.8 & 6.8800 \\ 0.06162 & 3175.2 & 3541.3 & 7.0308 & 0.051966 & 3167.9 & 3531.6 & 6.5507 & 0.045432 & 3247.3 & 642.4 & 7.021 \\ 0.00 & 0.0756 & 4040.1 & 4625.4 & 80786 & 0.048157 & 3074.8 & 3888.3 & 7.3487 & 0.054842 & 3247.3 & 642.4 & 7.021 \\ 0.00 & 0.0756 & 4040.1 & 4625.4 & 80786 & 0.083571 & 4037.5 & 4232.5 & 7.8816 & 0.061011 & 3635.7 & 4123.8 & 7.5185 \\ 0.00 & 0.08453 & 3247.7 & 54751 & 0.07670 & 38357.4 & 4395.0 & 7.7372 \\ 0.00 & 0.0756 & 4040.1 & 4252.4 & 80786 & 0.083571 & 4037.5 & 4232.5 & 7.8816 & 0.061011 & 3635.7 & 4123.8 & 7.5185 \\ 0.02328 & 2647.6 & 2857.1 & 5.8738 & 0.097075 & 4457.9 & 5.137.4 & 8.3810 & 0.061438 & 2647.9 & 5271.8 & 5.4638 \\ 0.02048 & 2588.5 & 7.429 & 5.6791 & 0.018028 & 2545.2 & 2725.5 & 5.6159 & 0.013496 & 2576.6 & 671.3 & 5.4638 \\ 0.02328 & 2647.6 & 2857.1 & 5.8738 & 0.019877 & 2611.6 & 2810.3 & 5.7596 \\ 0.02328 & 2647.6 & 2857.1 & 5.8738 & $	700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136
$ \begin{array}{c} 900 & 0.13476 & 3844.8 & 4380.2 & 8.0675 \\ 0.0100 & 0.1665 & 4045.1 & 4631.2 & 8.2698 & 0.13020 & 4043.9 & 4629.8 & 8.2144 & 0.11715 & 4042.6 & 628.3 & 8.1648 \\ 1100 & 0.15824 & 4251.4 & 4884.4 & 8.4612 & 0.14064 & 4250.4 & 4883.2 & 8.4060 & 0.12655 & 4249.3 & 4882.1 & 8.5366 \\ 1200 & 0.16992 & 4463.5 & 5143.2 & 8.6430 & 0.15103 & 4462.6 & 5142.2 & 8.5880 & 0.13592 & 4461.6 & 5141.3 & 8.5388 \\ 100 & 0.18157 & 4680.9 & 5407.2 & 8.8164 & 0.16140 & 4880.1 & 5406.5 & 8.7616 & 0.14527 & 4679.3 & 5405.7 & 8.7124 \\ \hline P & = 6.0 MPa (275.59 ^{\circ}) & P & = 7.0 MPa (285.83 ^{\circ}) & P & = 8.0 MPa (295.01 ^{\circ}) \\ \hline Sat. & 0.03245 & 2589.9 & 2784.6 & 5.8902 & 0.027378 & 2581.0 & 2772.6 & 5.8148 & 0.023525 & 2570.5 & 2758.7 & 5.7450 \\ 0.03245 & 2293.7 & 3178.3 & 6.5432 & 0.039958 & 2879.5 & 3159.2 & 6.4502 & 0.023442 & 2864.6 & 3139.4 & 6.3658 \\ \hline 0.05217 & 2989.9 & 3302.9 & 6.57219 & 0.048187 & 2970.3 & 288.3 & 6.5353 & 0.038144 & 2864.6 & 3139.4 & 6.3658 \\ \hline 0.05127 & 298.9 & 3302.9 & 6.7219 & 0.048187 & 2970.3 & 288.3 & 6.5353 & 0.038144 & 2967.8 & 273.3 & 6.579 \\ \hline 0.005667 & 3083.1 & 3423.1 & 6.8826 & 0.048157 & 3074.3 & 3411.4 & 6.8000 & 0.041767 & 3065.4 & 339.5 & 6.7266 \\ \hline 0.06527 & 3267.2 & 3568.8 & 7.1693 & 0.055665 & 3261.0 & 3551.6 & 6.9507 & 0.045123 & 3160.5 & 3521.8 & 6.8800 \\ \hline 0.00567 & 3083.1 & 3423.1 & 6.8826 & 0.076750 & 3885.7 & 4373.0 & 7.8014 & 0.067082 & 3832.7 & 4369.3 & 7.7372 \\ \hline 0.0 & 0.07355 & 3453.0 & 3894.8 & 4376.6 & 7.8751 & 0.076750 & 3835.7 & 4373.0 & 7.8014 & 0.067082 & 3832.7 & 4369.3 & 7.7372 \\ \hline 0.0 & 0.07364 & 3243.7 & 1.6582 & 0.06856 & 3329.5 & 4128.5 & 7.8836 & 0.061013 & 3557. & 7.4310 \\ \hline 0.12107 & 4077.7 & 5404.1 & 8.6273 & 0.103781 & 4676.1 & 5402.6 & 8.551 & 0.07307 & 4035.0 & 4619.6 & 7.9419 \\ \hline 0.020489 & 2584.5 & 2742.9 & 5.6791 & 0.018028 & 2454.2 & 2424.6 & 4219 & 0.023012 & 213.435.0 & 4619.6 & 7.9419 \\ \hline 0.020489 & 2584.5 & 2742.9 & 5.6791 & 0.018028 & 2454.2 & 3214. & 0.023013 & 213.47 & 5.63138 \\ \hline 0.020489 & 2584.5 & 2742.9 & 5.6791 & 0.018028 $	800	0.12292	3650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7	7.7458
$ \begin{array}{c} 1000 & 0.14653 \ 4045.1 \ 463.1.2 \ 8.2698 \ 0.13020 \ 4043.9 \ 4629.8 \ 8.2144 \ 0.11715 \ 4042.6 \ 4628.3 \ 8.1648 \ 0.16164 \ 4250.4 \ 4883.2 \ 8.3666 \ 0.12655 \ 2429.3 \ 8482.1 \ 8.3566 \ 0.15103 \ 4462.6 \ 5142.2 \ 8.5880 \ 0.13592 \ 4461.6 \ 5141.3 \ 8.5388 \ 0.18157 \ 4680.9 \ 5407.2 \ 8.8164 \ 0.16140 \ 4880.1 \ 5406.5 \ 8.7616 \ 0.14527 \ 4769.3 \ 5405.7 \ 8.7124 \ \hline P = 0.0 M_{Pa} (275.5 \ 9^{+}) \ P = 7.0 \ M_{Pa} (285.83^{+}) \ P = 8.0 \ M_{Pa} (295.01^{+}) \ C \ Sat. \ 0.03245 \ 2589.9 \ 2784.6 \ 5.8902 \ 0.027378 \ 2581.0 \ 2772.6 \ 5.8148 \ 0.02352 \ 2570.5 \ 2758.7 \ 5.7450 \ 0.04225 \ 2790.4 \ 3043.9 \ 6.3357 \ 0.032622 \ 2770.1 \ 3016.9 \ 6.2305 \ 0.02479 \ 2592.3 \ 2786.5 \ 5.7937 \ 0.032626 \ 2770.1 \ 3016.9 \ 6.2305 \ 0.02479 \ 2592.3 \ 2786.5 \ 5.7937 \ 0.032626 \ 2770.1 \ 3016.9 \ 6.2305 \ 0.038144 \ 2864.6 \ 3139.4 \ 6.3658 \ 0.05617 \ 3032.1 \ 6.5577 \ 3036.6 \ 6.5507 \ 0.044172 \ 2893.9 \ 3302.9 \ 6.7219 \ 0.044187 \ 3970.3 \ 3288.3 \ 6.6353 \ 0.038144 \ 2864.6 \ 3139.4 \ 6.3658 \ 0.05617 \ 3032.1 \ 4.262.6 \ 8.261.0 \ 3656.6 \ 7.0910 \ 0.041767 \ 3065.4 \ 3399.5 \ 6.7266 \ 0.06101 \ 3655.7 \ 3427.3 \ 362.4 \ 7.0221 \ 300.557 \ 362.1 \ 3665.4 \ 3099.5 \ 6.7266 \ 0.048157 \ 3074.3 \ 3414.4 \ 6.8000 \ 0.041767 \ 3065.4 \ 3399.5 \ 6.7266 \ 0.06856 \ 3639.5 \ 4128.5 \ 7.5816 \ 0.041767 \ 3065.4 \ 3399.5 \ 6.7266 \ 0.06856 \ 3639.5 \ 4128.5 \ 7.5816 \ 0.041767 \ 3065.4 \ 3399.5 \ 6.7266 \ 0.06855 \ 3639.5 \ 4128.5 \ 7.5816 \ 0.04863 \ 3254.7 \ 3642.4 \ 7.0221 \ 366.5 \ 3639.5 \ 4128.5 \ 7.5816 \ 0.06111 \ 3635.7 \ 4123.8 \ 7.5185 \ 0.06111 \ 3635.7 \ 4123.8 \ 7.5185 \ 0.06111 \ 3635.7 \ 4123.8 \ 7.5185 \ 0.07675 \ 4353.1 \ 4373.0 \ 7.8014 \ 0.05482 \ 322.7 \ 369.3 \ 7.7372 \ 366.8 \ 3639.5 \ 4128.5 \ 7.5836 \ 0.06111 \ 3635.7 \ 4123.8 \ 7.5185 \ 0.07675 \ 4457.5 \ 420.5 \ 420.5 \ 4350.0 \ 4350.5 \ 4128.5 \ 4128.5 \ 4350.0 \ 4350.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 \ 4128.5 $	900	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6	4628.3	8.1648
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1100	0.15824	4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3	4882.1	8.3566
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1200	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6	5141.3	8.5388
P = 6.0 MPa (275.59 °C) $P = 7.0 MPa (285.83 °C)$ $P = 8.0 MPa (295.01 °C)$ Sat.0.03245 2589.92784.65.89020.027378 2581.02772.65.81480.023252 257.0.52758.75.74503000.0425 2790.4304.36.33570.035262 2770.13016.96.23050.022975 2748.32988.16.13214000.04742 2893.73178.36.54320.039958 2879.53159.26.45020.038194 2967.82273.36.55585000.056673083.13423.16.88260.044187 3074.33411.46.80000.041767 3065.43399.56.72665000.056673083.13423.16.88260.048157 3074.33411.46.80000.041767 3065.43399.56.72665000.05627 3267.23658.87.16930.055665 3261.03650.67.09100.048463 3254.73642.47.02217000.07355 3453.03894.37.42470.062850 3448.3388.37.34870.048463 324.73622.728228000.08165 3643.24133.17.65820.069865 639.54128.57.58360.061011 363.74123.87.131810000.09756 4040.14625.48.07860.083511 4037.54622.58.005500.073079 4035.04619.67.941911000.10543 4247.14879.78.27090.09341 4245.04877.48.19820.079025 4242.84875.08.138112000.11326 4459.86139.48.45340.01877	1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124
$ \begin{array}{c} \text{Sat.} & 0.03245 \ 2589.9 \ 2784.6 \ 5.8902 \ 0.027378 \ 2581.0 \ 2772.6 \ 5.8148 \ 0.023525 \ 2570.5 \ 2758.7 \ 5.7450 \ 0.035262 \ 2770.1 \ 3016.9 \ 6.2305 \ 0.022979 \ 2592.3 \ 2786.5 \ 5.7937 \ 0.035262 \ 2770.1 \ 3016.9 \ 6.2305 \ 0.022975 \ 2748.3 \ 2988.1 \ 6.1321 \ 400 \ 0.04742 \ 2893.7 \ 3178.3 \ 6.5432 \ 0.039988 \ 2879.5 \ 3159.2 \ 6.4502 \ 0.034344 \ 2864.6 \ 3139.4 \ 6.3658 \ 4500 \ 0.05617 \ 2989.9 \ 3302.9 \ 6.7219 \ 0.044187 \ 2979.0 \ 3288.3 \ 6.6353 \ 0.038194 \ 2967.8 \ 3273.3 \ 6.5579 \ 0.066102 \ 3175.2 \ 3541.3 \ 7.0308 \ 0.051966 \ 3167.9 \ 3531.6 \ 6.9507 \ 0.045172 \ 3160.5 \ 3521.8 \ 6.8800 \ 0.06102 \ 3175.2 \ 3541.3 \ 7.0308 \ 0.051966 \ 3167.9 \ 3531.6 \ 6.9507 \ 0.045172 \ 3160.5 \ 3521.8 \ 6.8800 \ 0.061627 \ 3267.2 \ 368.8 \ 7.1693 \ 0.055665 \ 3261.0 \ 3650.6 \ 7.0910 \ 0.048163 \ 3254.7 \ 3642.4 \ 7.0221 \ 0.062850 \ 3448.3 \ 3888.3 \ 7.3487 \ 0.054829 \ 3443.6 \ 3882.2 \ 7.2822 \ 800 \ 0.08165 \ 3643.2 \ 4133.1 \ 7.6582 \ 0.069856 \ 3639.5 \ 4128.5 \ 7.836 \ 0.061011 \ 3635.7 \ 4123.8 \ 7.1732 \ 0.069856 \ 3639.5 \ 4128.5 \ 7.836 \ 0.061011 \ 3635.7 \ 4123.8 \ 7.1682 \ 0.069856 \ 3639.5 \ 4128.5 \ 7.8016 \ 0.067082 \ 3424.2 \ 8475.0 \ 8.1350 \ 0.07075 \ 4057.9 \ 4035.7 \ 4123.8 \ 7.1742 \ 0.069856 \ 3639.5 \ 4128.5 \ 7.8016 \ 0.070707 \ 4035.0 \ 4619.6 \ 7.9419 \ 0.099756 \ 4040.1 \ 4625.4 \ 8.0786 \ 0.09371 \ 407.5 \ 5421.6 \ 8.0555 \ 0.079025 \ 4242.8 \ 875.0 \ 8.1350 \ 0.073079 \ 4035.0 \ 4619.6 \ 7.9419 \ 0.09975 \ 4452.8 \ 8.750 \ 8.1350 \ 0.022442 \ 445.1 \ 5135.5 \ 8.3181 \ 1000 \ 0.12107 \ 4677.7 \ 5404.1 \ 8.6277 \ 0.022442 \ 6.283.1 \ 3077.4 \ 8.3980 \ 0.02344 \ 456.1 \ 5135.5 \ 8.3181 \ 1000 \ 0.023962 \ 4242.8 \ 4875.0 \ 8.1350 \ 0.023044 \ 456.1 \ 5135.5 \ 8.3181 \ 1000 \ 0.02344 \ 456.1 \ 5135.5 \ 8.3181 \ 0.03364 \ 467.5 \ 5401.0 \ 8.4925 \ 0.03364 \ 467.5 \ 5401.0 \ 8.4925 \ 0.03364 \ 467.5 \ 5401.0 \ 8.4925 \ 0.03364 \ 467.5 \ 5401.0 \ 8.4925 \ 0.03364 \ 8.451 \ 0.03365 \ 8.4456 \ 0.03364 \ 8.451 \ 0.03365 \ 8.4456 \ 0.03365 \ 8.456 \ 0.03366 \ 8.445$		P	= 6.0 MP	a (275.59	°C)	P	= 7.0 MPa	a (285.83	°C)	P =	8.0 MPa	(295.01	°C)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sat.	0.03245	2589.9	2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525	2570.5	2758.7	5.7450
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	0.03619	2668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937
$ \begin{array}{c} 400 & 0.04742 & 2893.7 & 3178.3 & 6.5432 & 0.03958 & 2879.5 & 3159.2 & 6.4502 & 0.034344 & 2864.6 & 3139.4 & 6.3658 \\ 450 & 0.05217 & 288.9 & 3302.9 & 6.7219 & 0.044187 & 2979.0 & 3288.3 & 6.6553 & 0.038194 & 2967.8 & 3273.3 & 6.5579 \\ 500 & 0.066102 & 3175.2 & 3541.3 & 7.0308 & 0.051966 & 3167.9 & 3531.6 & 6.9507 & 0.0441767 & 3065.4 & 3399.5 & 6.7266 \\ 500 & 0.06527 & 3267.2 & 3658.8 & 7.1693 & 0.055665 & 3261.0 & 3650.6 & 7.0910 & 0.048463 & 3254.7 & 3642.4 & 7.0221 \\ 700 & 0.07355 & 3453.0 & 3894.3 & 7.4247 & 0.052865 & 3648.3 & 3888.3 & 7.3487 & 0.054829 & 3443.6 & 3882.2 & 7.2822 \\ 800 & 0.08165 & 3643.2 & 4133.1 & 7.6582 & 0.069866 & 3639.5 & 4128.5 & 7.5836 & 0.061011 & 3635.7 & 4123.8 & 7.5185 \\ 900 & 0.08964 & 3838.8 & 4376.6 & 7.8751 & 0.076750 & 3835.7 & 4373.0 & 7.8014 & 0.067082 & 3832.7 & 4369.3 & 7.7372 \\ 1000 & 0.09756 & 4040.1 & 4625.4 & 8.0786 & 0.083571 & 4037.5 & 4622.5 & 8.0055 & 0.073079 & 4035.0 & 4619.6 & 7.9419 \\ 1100 & 0.10543 & 4247.1 & 4879.7 & 8.2709 & 0.090341 & 4245.0 & 4877.4 & 8.1982 & 0.079025 & 4242.8 & 4875.0 & 8.1350 \\ 1200 & 0.11326 & 4459.8 & 5139.4 & 8.4534 & 0.097075 & 4457.9 & 5137.4 & 8.3810 & 0.084934 & 4456.1 & 5135.5 & 8.3181 \\ 1300 & 0.12107 & 4677.7 & 5404.1 & 8.6273 & 0.103781 & 4676.1 & 5402.6 & 8.5551 & 0.090817 & 4674.5 & 5401.0 & 8.4925 \\ \hline P & 9.0 MP_a (303.35 \ C) & P = 10.0 MPa (311.00 \ C) & P = 12.5 MPa (327.81 \ C) \\ \hline Sat & 0.020489 & 2585.2 & 2742.9 & 5.6771 & 0.018028 & 2545.2 & 2725.5 & 5.6159 \\ 350 & 0.023842 & 2647.6 & 2857.1 & 5.8738 & 0.002847 & 2367.4 & 5.2410 & 0.020030 & 2789.6 & 3040.0 & 6.0433 \\ 450 & 0.03524 & 2956.3 & 3258.0 & 6.4872 & 0.02742 & 2924.5 & 5.9460 & 0.016138 & 2624.9 & 2826.6 & 5.7130 \\ 0.033524 & 2956.3 & 3258.0 & 6.4872 & 0.027842 & 2342.4 & 6.4219 & 0.023030 & 222.8 & 3040.0 & 6.0433 \\ 450 & 0.03524 & 2956.3 & 3387.4 & 6.6603 & 0.032811 & 3047.0 & 3375.1 & 6.5995 & 0.026303 & 3023.2 & 3343.6 & 6.4651 \\ 550 & 0.038854 & 356.3 & 3387.4 & 6.6603 & 0.032811 & 3047.0 & 3375.1 & 6.5945 & 0.030306 & 3225.8 & 3604.6 & 6.$	350	0.04225	2790.4	3043.9	6.3357	0.035262	2770.1	3016.9	6.2305	0.029975	2748.3	2988.1	6.1321
$ \begin{array}{c} 450 \\ 0.05217 \\ 2989.9 \\ 3302.9 \\ 6.7219 \\ 0.06567 \\ 0.05667 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0567 \\ 0.0512 \\ 0.0567 \\ 0.0512 \\ 0.0527 \\ 0.0556 \\ 0.0512 \\ 0.0512 \\ 0.0556 \\ 0.05196 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.0556 \\ 0.05196 \\ 0.0556 \\ 0.0556 \\ 0.00510 \\ 0.048463 \\ 0.054829 \\ 0.05482 \\ 0.073079 \\ 0.05482 \\ 0.073079 \\ 0.05482 \\ 0.073079 \\ 0.05482 \\ 0.073079 \\ 0.05482 \\ 0.073079 \\ 0.05482 \\ 0.073079 \\ 0.07307 \\ 0.048463 \\ 0.02440 \\ 0.090775 \\ 4457.9 \\ 0.007075 \\ 4457.9 \\ 0.00707 \\ 0.04849 \\ 0.05413 \\ 0.02440 \\ 0.024$	400	0.04742	2893.7	3178.3	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344	2864.6	3139.4	6.3658
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	450	0.05217	2989.9	3302.9	6.7219	0.044187	2979.0	3288.3	6.6353	0.038194	2967.8	3273.3	6.5579
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	500	0.05667	3083.1	3423.1	6.8826	0.048157	3074.3	3411.4	6.8000	0.041/6/	3065.4	3399.5	6.7266
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	550	0.06102	31/5.2	3541.3	7.0308	0.051966	3167.9	3531.6	6.9507	0.0451/2	3160.5	3521.8	6.8800
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	500	0.06527	3267.2	3558.8	7.1693	0.055665	3261.0	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/00	0.07355	3453.0	3894.3	7.4247	0.062850	3448.3	3888.3	7.548/	0.054829	3443.6	3882.2	7.2822
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	000	0.08160	3643.2	4133.1	7.0082	0.069836	3039.5	4128.0	7.0836	0.061011	3030.7	4123.8	7.5185
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	0.00964	3030.0	4370.0	9.0796	0.076750	3030.7 4027 E	4373.0	7.0014 9.0055	0.067082	3032.7	4369.3	7.7372
11000.113264459.85139.48.45340.0970754457.95137.48.13800.0849344456.15135.58.318113000.121074677.75404.18.62730.1037814676.15147.48.38100.0849344456.15135.58.318113000.121074677.75404.18.62730.1037814676.15402.68.55510.0998174674.55401.08.4925Sat.0.0204892558.52742.95.67910.0180282545.22725.55.61590.0134962505.62674.35.46383250.022842647.62857.15.87380.0198772611.62810.35.75960.0161382624.92826.65.71304000.0299602849.23118.86.28760.0264362833.13097.56.21410.020302789.6304.06.04334500.0335242956.33258.06.48720.0297822944.53242.46.42190.0230192913.73201.56.27495000.0367933056.33387.46.66030.0328113047.03375.16.59950.0280333126.13476.56.63176000.0428613248.43634.16.96050.0383783242.03655.86.90450.03306322.83604.66.78286500.045893438.83876.17.2290.0435973434.03870.07.16930.0346123422.0385	1100	0.05750	4040.1	4020.4	8 2700	0.083371	4037.5	4022.5 A877 A	8 1082	0.079025	4035.0	4015.0	8 1350
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1200	0.10043	4247.1	40/9./ 5120./	9 4524	0.090341	4245.0	5127 A	9 2910	0.079025	4242.0	4070.0 E12E E	9 21 91
13000.12107 4074.73401.0 <t< td=""><td>1200</td><td>0.11320</td><td>4409.0</td><td>5139.4</td><td>0.4034</td><td>0.097075</td><td>4457.9</td><td>5157.4</td><td>0.3010 9.5551</td><td>0.064934</td><td>4400.1</td><td>5135.5</td><td>8,4025</td></t<>	1200	0.11320	4409.0	5139.4	0.4034	0.097075	4457.9	5157.4	0.3010 9.5551	0.064934	4400.1	5135.5	8,4025
P = 9.0 MPa (303.35 °C) $P = 10.0$ MPa (311.00 °C) $P = 12.5$ MPa (327.81 °C)Sat.0.020489 2558.52742.95.67910.018028 2545.22725.55.61590.013496 2505.62674.35.46383250.023324 2647.62857.15.87380.019877 2611.62810.35.75960.016138 2624.92826.65.71304000.029960 2849.23118.86.28760.026436 2833.13097.56.21410.020030 2789.63040.06.04334500.035524 2956.33258.06.48720.029782 2944.53242.46.42190.023019 2913.73201.56.27495000.036793 3056.33387.46.66030.0328113047.03375.16.59950.026303 3023.23343.66.46515500.039885 3153.03512.06.81640.0356553145.43502.06.75850.028033 3126.13476.56.63176000.042861 3248.43634.16.96050.03878 324.203625.86.90450.030306 3225.83604.66.78286500.044575 3343.43755.27.09540.04118 3338.03748.17.04080.032491 3324.13730.26.92277000.048589 3438.83876.17.22290.043597 3434.03870.07.16930.034612 3422.03854.67.05408000.054132 3632.04119.27.46060.048629 3628.24114.57.40850.038724 3618.84102.87.29679000.059562 3829.64365.77.68020.053	1300	0.12107	40/7.7	0404.1	0.0273	0.103781	4070.1	0402.0	0.0001	0.090817	4074.5	0401.0	0.4920
Sat. 0.020489 2583 2742.9 5.6791 0.018028 2642.2 2725.5 5.6159 0.013496 2505.6 2674.3 5.4638 325 0.023284 2647.6 2857.1 5.8738 0.019877 2611.6 2810.3 5.7596 350 0.025816 2725.0 2957.3 6.0380 0.022440 2699.6 2924.0 5.9460 0.016138 2624.9 2826.6 5.7130 400 0.029960 2849.2 3118.8 6.2876 0.026436 2833.1 3097.5 6.2141 0.020300 2789.6 3040.0 6.0433 450 0.036793 3056.3 3387.4 6.6603 0.032811 3047.0 3375.1 6.5995 0.026630 302.2. 3343.6 6.4551 500 0.039885 3153.0 3512.0 6.8164 0.035655 3147.4 3502.0 6.7585 0.028033 3126.1 3476.5 6.6317 600 0.0428613 3248.4 3634.1 6.9605 0.03878 3242.0 3652.8 6.9045 0.030306 3225.8 3604.6 6.7828 650 </td <td></td> <td>P</td> <td>= 9.0 MP</td> <td>a (303.35</td> <td>°C)</td> <td>P =</td> <td>= 10.0 MP</td> <td>a (311.00</td> <td>-C)</td> <td>P =</td> <td>12.5 MPa</td> <td>(327.81</td> <td>-"U)</td>		P	= 9.0 MP	a (303.35	°C)	P =	= 10.0 MP	a (311.00	-C)	P =	12.5 MPa	(327.81	-"U)
325 0.02584 2647.1 5.8736 0.01987 2611.3 5.7396 0.016138 2624.9 2826.6 5.7130 350 0.025816 2725.0 2957.3 6.0380 0.022440 2699.6 2924.0 5.9460 0.016138 2624.9 2826.6 5.7130 400 0.029960 2849.2 3118.8 6.2876 0.026436 2833.1 3097.5 6.2141 0.02030 2789.6 3040.0 6.0433 450 0.033524 2956.3 3258.0 6.4872 0.029782 2944.5 3242.4 6.4219 0.023019 2913.7 3201.5 6.2749 500 0.036793 3056.3 3387.4 6.6603 0.032811 3047.0 3375.1 6.5995 0.026630 3023.2 343.6 6.4651 500 0.048813 3634.1 6.9605 0.038378 3242.0 3625.8 6.9045 0.030306 3225.8 3604.6 6.7828 650 0.045755 343.4 3755.2 7	5at.	0.020485	2008.0	2742.9	5.6791	0.018028	2545.2	2/25.5	5.6159	0.013496	2505.6	2674.3	5.4638
350 0.029960 22430 252440 252440 5.3460 0.01138 22243 222440 5.3460 0.01138 22243 222443 221343 <td>250</td> <td>0.025204</td> <td>2047.0</td> <td>2007.1</td> <td>0.0730 6.0290</td> <td>0.0198/7</td> <td>2011.0</td> <td>2010.3</td> <td>5.7596</td> <td>0.016128</td> <td>2624.0</td> <td>2826.6</td> <td>5 7120</td>	250	0.025204	2047.0	2007.1	0.0730 6.0290	0.0198/7	2011.0	2010.3	5.7596	0.016128	2624.0	2826.6	5 7120
450 0.023502 2432 31183 0.22430 203430 203431 3037.1 6.2141 0.020302 2783.0 3040.0 0.02430 450 0.033524 2956.3 3288.0 6.4872 0.029782 2944.5 3242.4 6.4219 0.02019 2913.7 3201.5 6.2749 500 0.036793 3056.3 3387.4 6.6603 0.032811 3047.0 3375.1 6.5995 0.026630 3023.2 3343.6 6.4651 500 0.039885 3153.0 3512.0 6.8164 0.035655 3145.4 3502.0 6.7585 0.028033 3126.1 3476.5 6.6317 600 0.042861 3248.4 3634.1 6.9605 0.038378 3242.0 3625.8 6.9045 0.030306 3225.8 3604.6 6.7828 650 0.045755 3343.4 3755.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.032491 324.1 3730.2 6.9227 700 0.048589 3438.8 3876.1 7.2229 0.043597 343.0 3870.0 7.1693 0.034612 3422.0 3854.6 7.0540	400	0.020060	0 2720.0	2957.5	6.0360	0.022440	2099.0	2924.0	6 21 4 1	0.010138	2024.9	2020.0	6.0433
430 0.035793 2536.0 6.472 0.025762 2542.4 6.4219 0.025019 2517.5 3201.5 6.2749 500 0.036793 3056.3 3387.4 6.6603 0.032811 3047.0 3375.1 6.5995 0.026630 3023.2 3343.6 6.4661 500 0.039885 3153.0 3512.0 6.8164 0.035655 3145.4 3502.0 6.7585 0.028033 312.6.1 3476.5 6.6317 600 0.042861 3248.4 3634.1 6.9605 0.038378 3242.0 3625.8 6.9045 0.030306 3225.8 3604.6 6.7828 650 0.045755 3343.4 3755.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.032491 324.1 3730.2 6.9227 700 0.048589 3438.8 3876.1 7.2229 0.043597 343.0 3870.0 7.1693 0.034612 3422.0 3854.6 7.0540 800 0.054919 4365.7 7.6802 0.053547 3862.6 4362.0 7.6290 0.042720 3818.8	400	0.029500	2049.2	2259.0	6 4970	0.020430	2033.1	2040 4	6 4210	0.020030	20127	2201 6	6 2740
550 0.03985 3153.3 537.4 6.0953 317.5 317.5 537.1 6.0953 312.2 314.5 314.5 314.6 357.1 6.0953 312.2 314.5 314.5 314.6 357.1 6.0953 312.1 314.6 3502.0 6.7585 0.028033 312.1 31476.5 6.6317 600 0.042861 3248.4 3634.1 6.9605 0.038378 3242.0 3625.8 6.9045 0.030306 3225.8 3604.6 6.7828 650 0.045755 3343.4 3755.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.032491 3224.1 3730.2 6.9227 700 0.048589 3438.8 3876.1 7.2229 0.043597 3434.0 3870.0 7.1693 0.034612 3422.0 3854.6 7.0540 800 0.059562 3829.6 4365.7 7.6802 0.053547 3826.5 4362.0 7.6290 0.042720 3818.9 4352.9 7.5195	500	0.035524	29066.3	32387 /	6 6603	0.029782	2944.5	2275 1	6 5005	0.025630	2913.7	3201.5	6.4651
500 0.042861 3248.4 3634.1 6.9605 0.038378 3242.0 3625.8 6.9045 0.030303 3225.8 3604.6 6.7828 650 0.042861 3248.4 3755.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.030303 3225.8 3604.6 6.7828 650 0.045755 3343.4 3755.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.032491 3224.1 3730.2 6.9227 700 0.048589 3438.8 3876.1 7.2229 0.043597 3434.0 3870.0 7.1693 0.034612 342.0 3854.6 7.0540 800 0.054132 3632.0 4119.2 7.4606 0.048629 3628.2 4114.5 7.4085 0.038724 3618.8 4102.8 7.2967 900 0.05952 3829.6 4365.7 7.6802 0.058391 4029.9 4613.8 7.8349 0.046641 4023.5 4606.5 7.7269 1000 <td< td=""><td>550</td><td>0.030793</td><td>3056.5</td><td>3512.0</td><td>6.8164</td><td>0.035655</td><td>3047.0</td><td>3502.0</td><td>6.7585</td><td>0.025650</td><td>3126.1</td><td>3/76 5</td><td>6.4051</td></td<>	550	0.030793	3056.5	3512.0	6.8164	0.035655	3047.0	3502.0	6.7585	0.025650	3126.1	3/76 5	6.4051
650 0.04575 334.4 375.2 7.0954 0.041018 3338.0 3748.1 7.0408 0.032491 3324.1 3730.2 6.9227 700 0.048589 3438.8 3876.1 7.2229 0.043597 343.0 3870.0 7.1693 0.034612 342.0 3854.6 7.0540 800 0.054132 3632.0 4119.2 7.4606 0.048629 3628.2 4114.5 7.4085 0.038724 3618.8 4102.8 7.2967 900 0.059562 3829.6 4365.7 7.6802 0.053547 3826.5 4362.0 7.6290 0.042720 3818.9 4352.9 7.5195 1000 0.070224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.045010 423.5 4606.5 7.7269 1100 0.07224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.050510 423.1 4864.5 7.9220 1200 0.0	600	0.033863	3248.4	3634.1	6 9605	0.038378	3242.0	3625.8	6 9045	0.020000	3225.8	3604.6	6 7828
0.048589 0.02421 0.024214 0.02421 0.02421	650	0.045755	3240.4	3755.2	7.005/	0.041018	3338.0	37/8 1	7.0408	0.032491	3324 1	3730.2	6 9227
800 0.054132 3632.0 4119.2 7.4606 0.048629 3628.2 4114.5 7.4085 0.03872 3618.8 4102.8 7.2967 900 0.059562 3829.6 4365.7 7.6802 0.053547 3826.5 4362.0 7.6290 0.042720 3818.9 4352.9 7.5195 1000 0.064919 4032.4 4616.7 7.8855 0.058391 402.9 4613.8 7.8349 0.046641 4023.5 4606.5 7.7269 1100 0.070224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.050510 4233.1 4864.5 7.9220 1200 0.075492 4454.2 5133.6 8.2625 0.067938 4452.4 5131.7 8.2126 0.054342 4447.7 5127.0 8.1065 1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819	700	0.048580	3438.8	3876 1	7 2229	0.043597	3434.0	3870.0	7 1693	0.034612	3422.0	3854.6	7 0540
000 0.059562 3829.6 4365.7 7.6802 0.053547 3826.5 4362.0 7.6290 0.042720 3818.9 4352.9 7.5195 1000 0.064919 4032.4 4616.7 7.8855 0.053831 4029.9 4613.8 7.8349 0.046641 4023.5 4606.5 7.7269 1100 0.070224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.050510 4233.1 4864.5 7.9220 1200 0.075492 4454.2 5133.6 8.2625 0.067938 4452.4 5131.7 8.2126 0.054342 4447.7 5127.0 8.1065 1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819	800	0.054132	3632.0	4119.2	7 4606	0.048629	3628.2	4114.5	7 4085	0.038724	3618.8	4102.8	7 2967
1000 0.064919 4032.4 4616.7 7.8855 0.058391 4029.9 4613.8 7.8349 0.046641 4023.5 4606.5 7.7269 1100 0.070224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.050510 4233.1 4864.5 7.9220 1200 0.075492 4542.2 5133.6 8.2625 0.067938 4452.4 5131.7 8.2126 0.054342 4447.7 5127.0 8.1065 1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819	900	0.059562	3829.6	4365.7	7.6802	0.053547	3826.5	4362.0	7.6290	0.042720	3818.9	4352.9	7.5195
1100 0.070224 4240.7 4872.7 8.0791 0.063183 4238.5 4870.3 8.0289 0.050510 4233.1 4864.5 7.9220 1200 0.075492 4454.2 5133.6 8.2625 0.067938 4452.4 5131.7 8.2126 0.054342 4447.7 5127.0 8.1065 1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819	1000	0.064919	4032.4	4616.7	7.8855	0.058391	4029.9	4613.8	7.8349	0.046641	4023.5	4606.5	7.7269
1200 0.075492 4454.2 5133.6 8.2625 0.067938 4452.4 5131.7 8.2126 0.054342 4447.7 5127.0 8.1065 1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819	1100	0.070224	4240.7	4872.7	8.0791	0.063183	4238.5	4870.3	8.0289	0.050510	4233.1	4864.5	7.9220
1300 0.080733 4672.9 5399.5 8.4371 0.072667 4671.3 5398.0 8.3874 0.058147 4667.3 5394.1 8.2819	1200	0.075492	4454.2	5133.6	8.2625	0.067938	4452.4	5131.7	8.2126	0.054342	4447.7	5127.0	8.1065
	1300	0.080733	4672.9	5399.5	8.4371	0.072667	4671.3	5398.0	8.3874	0.058147	4667.3	5394.1	8.2819

TABLA A-6

Vapor	de agua sol	precalent	ado (<i>con</i>	clusión)								
Т	v	u	h	s	v	u	h	s	v	u	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	15.0 MP	a (342.16	°C)	P = 1	7.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463	2684.3	2902.4	5.7211	0.009950	2617.9	2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204	2845.4	3111.4	6.0212	0.012721	2807.3	3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385	2972.4	3276.7	6.2424	0.014793	2945.3	3241.2	6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305	3085.8	3423.6	6.4266	0.016571	3064.7	3396.2	6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073	3192.5	3561.3	6.5890	0.018185	3175.3	3539.0	6.5075
650	0.026804	3310.1	3712.1	6.8233	0.022742	3295.8	3693.8	6.7366	0.019695	3281.4	3675.3	6.6593
700	0.028621	3409.8	3839.1	6.9573	0.024342	3397.5	3823.5	6.8735	0.021134	3385.1	3807.8	6.7991
800	0.032121	3609.3	4091.1	7.2037	0.027405	3599.7	4079.3	7.1237	0.023870	3590.1	4067.5	7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348	3803.5	4334.6	7.3511	0.026484	3795.7	4325.4	7.2829
1000	0.038808	4017.1	4599.2	7.6378	0.033215	4010.7	4592.0	7.5616	0.029020	4004.3	4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029	4222.3	4852.8	7.7588	0.031504	4216.9	4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806	4438.5	5117.6	7.9449	0.033952	4433.8	5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
<i>P</i> = 25.0 MPa					P = 30.0) MPa						
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.002798	2068.9	2152.8	4.4758	0.002105	1914.9	1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299	2452.9	2611.8	5.1473	0.003434	2253.3	2373.5	4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737	2618.9	2821.0	5.4422	0.004957	2497.5	2671.0	5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691	2824.0	3084.8	5.7956	0.006933	2755.3	2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175	2974.5	3279.7	6.0403	0.008348	2925.8	3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445	3103.4	3446.8	6.2373	0.009523	3065.6	3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590	3221.7	3599.4	6.4074	0.010565	3190.9	3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2	4020.0	6.8301	0.013278	3531.6	3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473	3764.6	4288.8	7.0695	0.014904	3749.0	4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240	3978.6	4555.8	7.2880	0.016450	3965.8	4541.5	7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954	4195.2	4823.9	7.4906	0.017942	4184.4	4812.4	7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630	4415.3	5094.2	7.6807	0.019398	4406.1	5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		<i>P</i> = 40	.0 MPa			P = 50.0) MPa					
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731	1787.8	1874.4	4.0029	0.001633	1745.2	1843.2	3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009	1960.3	2060.7	4.2746	0.001816	1892.9	2001.8	4.1630
450	0.003692	2364.2	2511.8	4.9449	0.002487	2160.3	2284.7	4.5896	0.002086	2055.1	2180.2	4.4140
500	0.005623	2681.6	2906.5	5.4744	0.003890	2528.1	2722.6	5.1762	0.002952	2393.2	2570.3	4.9356
550	0.006985	2875.1	3154.4	5.7857	0.005118	2769.5	3025.4	5.5563	0.003955	2664.6	2901.9	5.3517
600	0.008089	3026.8	3350.4	6.0170	0.006108	2947.1	3252.6	5.8245	0.004833	2866.8	3156.8	5.6527
650	0.009053	3159.5	3521.6	6.2078	0.006957	3095.6	3443.5	6.0373	0.005591	3031.3	3366.8	5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717	3228.7	3614.6	6.2179	0.006265	3175.4	3551.3	6.0814
800	0.011521	3511.8	3972.6	6.6613	0.009073	3472.2	3925.8	6.5225	0.007456	3432.6	3880.0	6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296	3702.0	4216.8	6.7819	0.008519	3670.9	4182.1	6.6725
1000	0.014360	3952.9	4527.3	7.1355	0.011441	3927.4	4499.4	7.0131	0.009504	3902.0	4472.2	6.9099
1100	0.015686	4173.7	4801.1	7.3425	0.012534	4152.2	4778.9	7.2244	0.010439	4130.9	4757.3	7.1255
1200	0.016976	4396.9	5075.9	7.5357	0.013590	4378.6	5058.1	7.4207	0.011339	4360.5	5040.8	7.3248
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

Anexo 4. Propiedades del agua saturada según su temperatura

TABLA A-9

Temp	Presión de saturación.	De	nsidad, kø/m ³	Entalpía de vapori- zación	Ca esper	alor cífico, 'kg - K	Condu térr k W/	ctividad nica, /m - K	Viscosidad بر الع	dinámica, Número /m.s. de Prandti Pr		ero dtl. Pr	Coeficiente de expansión volumétrica, B 1/K	
T℃	P _{sat} , kPa	Líquido	Vapor	h _{ig} , kJ/kg	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Líquido	
0.01	0.6113	999.8	0.0048	2 501	4 217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00	-0.068×10^{-3}	
5	0.8721	999.9	0.0068	2 4 9 0	4 205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00	0.015×10^{-3}	
10	1.2276	999.7	0.0094	2 478	4 194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00	0.733×10^{-3}	
15	1.7051	999.1	0.0128	2 466	4 185	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138×10^{-3}	
20	2.339	998.0	0.0173	2 4 5 4	4 182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	0.195×10^{-3}	
25	3.169	997.0	0.0231	2 4 4 2	4 180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247×10^{-3}	
30	4.246	996.0	0.0304	2 4 3 1	4 178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10^{-3}	
35	5.628	994.0	0.0397	2 4 1 9	4 178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10^{-3}	
40	7.384	992.1	0.0512	2 407	4 179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-5}	4.32	1.00	0.377×10^{-3}	
45	9.593	990.1	0.0655	2 395	4 180	1 892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00	0.415×10^{-3}	
50	12.35	988.1	0.0831	2 383	4 181	1 900	0.644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3.55	1.00	0.451×10^{-3}	
55	15.76	985.2	0.1045	2 371	4 183	1 908	0.649	0.0208	0.504×10^{-3}	1.077×10^{-5}	3.25	1.00	0.484×10^{-3}	
60	19.94	983.3	0.1304	2 359	4 185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00	0.517×10^{-3}	
65	25.03	980.4	0.1614	2 3 4 6	4 187	1 926	0.659	0.0216	0.433×10^{-3}	1.110×10^{-5}	2.75	1.00	0.548×10^{-3}	
70	31.19	977.5	0.1983	2 334	4 1 9 0	1 936	0.663	0.0221	0.404×10^{-3}	1.126×10^{-5}	2.55	1.00	0.578×10^{-3}	
75	38.58	974.7	0.2421	2 321	4 193	1948	0.667	0.0225	0.378×10^{-3}	1.142×10^{-5}	2.38	1.00	0.607×10^{-3}	
80	47.39	971.8	0.2935	2 309	4 197	1 962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-5}	2.22	1.00	0.653×10^{-3}	
85	57.83	968.1	0.3536	2 296	4 201	1 977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.670×10^{-3}	
90	70.14	965.3	0.4235	2 283	4 206	1 993	0.675	0.0240	0.315×10^{-3}	1.193×10^{-5}	1.96	1.00	0.702×10^{-3}	
95	84.55	961.5	0.5045	2 270	4 2 1 2	2010	0.677	0.0246	0.297×10^{-3}	1.210×10^{-5}	1.85	1.00	0.716×10^{-3}	
100	101.33	957.9	0.5978	2 257	4 2 1 7	2 0 2 9	0.679	0.0251	0.282×10^{-3}	1.227×10^{-5}	1.75	1.00	0.750×10^{-3}	
110	143.27	950.6	0.8263	2 2 3 0	4 2 2 9	2 0 7 1	0.682	0.0262	0.255×10^{-3}	1.261×10^{-5}	1.58	1.00	0.798×10^{-3}	
120	198.53	943.4	1.121	2 203	4 2 4 4	2 1 2 0	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00	0.858×10^{-3}	
130	270.1	934.6	1.496	2 174	4 263	2177	0.684	0.0288	0.213×10^{-3}	1.330×10^{-5}	1.33	1.01	0.913×10^{-3}	
140	361.3	921.7	1.965	2 1 4 5	4 286	2 2 4 4	0.683	0.0301	0.197×10^{-3}	1.365×10^{-5}	1.24	1.02	0.970×10^{-3}	
150	475.8	916.6	2.546	2 1 1 4	4 3 1 1	2314	0.682	0.0316	0.183×10^{-3}	1.399×10^{-5}	1.16	1.02	1.025×10^{-3}	
160	617.8	907.4	3.256	2 083	4 3 4 0	2 4 2 0	0.680	0.0331	0.170×10^{-3}	1.434×10^{-5}	1.09	1.05	1.145×10^{-3}	
170	791.7	897.7	4.119	2 0 5 0	4 370	2 4 9 0	0.677	0.0347	0.160×10^{-3}	1.468×10^{-5}	1.03	1.05	1.178×10^{-3}	
180	1 002.1	887.3	5.153	2 0 1 5	4 4 1 0	2 590	0.673	0.0364	0.150×10^{-3}	1.502×10^{-5}	0.983	1.07	1.210×10^{-3}	
190	1 254.4	876.4	6.388	1 979	4 460	2710	0.669	0.0382	0.142×10^{-3}	1.537×10^{-5}	0.947	1.09	1.280×10^{-3}	
200	1 553.8	864.3	7.852	1 941	4 500	2840	0.663	0.0401	0.134×10^{-3}	1.571×10^{-5}	0.910	1.11	1.350×10^{-3}	
220	2318	840.3	11.60	1 859	4 6 1 0	3 1 1 0	0.650	0.0442	0.122×10^{-3}	1.641×10^{-5}	0.865	1.15	1.520×10^{-3}	
240	3 3 4 4	813.7	16.73	1 767	4 760	3 520	0.632	0.0487	0.111×10^{-3}	1.712×10^{-5}	0.836	1.24	1.720×10^{-3}	
260	4 688	783.7	23.69	1 663	4 970	4 0 7 0	0.609	0.0540	0.102×10^{-3}	1.788×10^{-5}	0.832	1.35	2.000×10^{-3}	
280	6412	750.8	33.15	1 544	5 280	4 835	0.581	0.0605	0.094×10^{-3}	1.870×10^{-5}	0.854	1.49	2.380×10^{-3}	
300	8 581	713.8	46.15	1 405	5 7 50	5 980	0.548	0.0695	0.086×10^{-3}	1.965×10^{-5}	0.902	1.69	2.950×10^{-3}	
320	11 274	667.1	64.57	1 239	6 540	7 900	0,509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97	Merce and a second	
340	14 586	610.5	92.62	1 028	8 2 4 0	11 870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2.43	<u></u>	
360	18 651	528.3	144.0	720	14 690	25 800	0.427	0.178	0.060×10^{-3}	2.571×10^{-5}	2.06	3.73	2223	
374 14	22.090	317.0	317.0	0		1.000		1999 - C	0.043×10^{-3}	4.313×10^{-5}		100	2023	

Nota 1: La viscosidad cinemática v y la difusividad térmica α se pueden calcular a partir de sus definiciones, $v = \mu/\rho y \alpha = k/\rho c_p = v/Pr$. Las temperaturas de 0.01°C, 100°C y 374.14°C son las temperaturas de los puntos triple, de ebullición y crítico del agua, respectivamente. Las propiedades cuya lista se da arriba (excepto la densidad del vapor) se pueden usar a cualquier presión con error despreciable, excepto a temperaturas cercanas al valor del punto crítico.

Nota 2: La unidad kJ/kg - °C, para el calor específico, es equivalente a kJ/kg - K y la unidad W/m - °C, para la conductividad térmica es equivalente a W/m - K.

Fuente: Los datos de la viscosidad y la conductividad térmica se tomaron de J. V. Sengers y J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291-1322. Los otros datos se obtuvieron de diversas fuentes o se calcularon.

Anexo 5. Información de tubos A-178 / SA-178 Gr A

TUBOS CALIDAD CALDERO ASTM A-178 / SA 178 Gr A - Gr C

Descripción: Tubos soldados por resistencia Eléctrica (ERW) de acero al carbono y carbonomanganeso para calderas recalentadores de acuerdo al estándar ASME/ASTM A 178/A.

USOS: Estos tubos son adecuados para su uso en calderas, generadores de vapor, serpentines de calefacción, radiadores, los tubos son tratados con calor a temperaturas superiores a 650 º C.

Composición Química

ELEMENTO	A-178/SA-178 Grado A	A-178/SA-178 Grado C			
С	0.06 a 0.18	0.35 máximo			
S	0.035 máximo	0.035 máximo			
Mn	0.27 a 0.63	0.80 máximo			
Р	0.035 máximo	0.035 máximo			

Propiedades Mecánicas

NORMA TÉCNICA	Limite de Fluencia (F) Kg/mm²	Resistencia a la Tracción (R) Kg/mm²	Elongación (A) %
A-178/SA-178 Grado A	26 mínimo	42 mínimo	30 mínimo
A-178/SA-178 Grado C	18 minimo	33 mínimo	35 mínimo