

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

Dante Guerrero-Chanduví

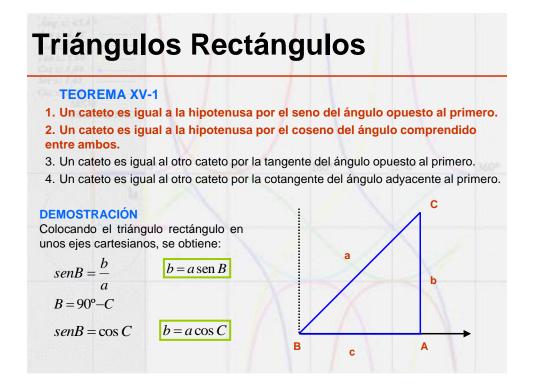
Piura, 2015

FACULTAD DE INGENIERÍA

Área Departamental de Ingeniería Industrial y de Sistemas

Esta obra está bajo una <u>licencia</u> <u>Creative Commons Atribución-</u> <u>NoComercial-SinDerivadas 2.5 Perú</u>

Repositorio institucional PIRHUA – Universidad de Piura


UNIVERSIDAD DE PIURA

Capítulo 15: Triángulos Rectángulos

GEOMETRÍA FUNDAMENTAL Y TRIGONOMETRÍA CLASES

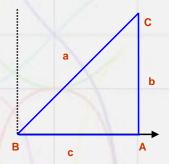
GFT 17/06/2015

Triángulos Rectángulos

TEOREMA XV-1

- 1. Un cateto es igual a la hipotenusa por el seno del ángulo opuesto al primero.
- 2. Un cateto es igual a la hipotenusa por el coseno del ángulo comprendido entre ambos.
- 3. Un cateto es igual al otro cateto por la tangente del ángulo opuesto al primero.
- 4. Un cateto es igual al otro cateto por la cotangente del ángulo adyacente al primero.

DEMOSTRACIÓN


Dado
$$senB = \frac{b}{a}$$
 y $cos B = \frac{c}{a}$ entonces

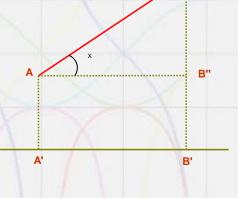
$$\frac{\operatorname{sen} B}{\operatorname{cos} B} = \frac{b/a}{c/a} = \frac{b}{c} = \operatorname{tg} B$$

$$b = c * (tgB)$$

reemplazando $tgB = \cot C$

Triángulos Rectángulos

Proyección de un Segmento


TEOREMA XV-2

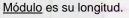
La longitud de la proyección de un segmento sobre una recta es igual a la longitud del segmento por el coseno del ángulo menor que forman segmento y recta.

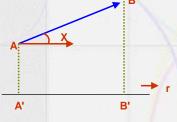
DEMOSTRACIÓN

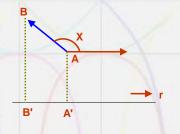
A'B' = proyección de AB

 $A'B' = AB'' = AB (\cos x)$

Triángulos Rectángulos

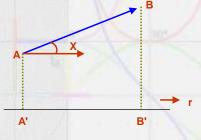

Proyección de un Segmento

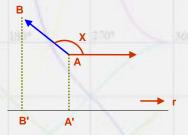

TEOREMA XV-3


La longitud algebraica de la proyección de un vector sobre un recta orientada es igual, en valor y signo, al módulo del vector por el coseno del ángulo que forman la dirección positiva de la recta y la del vector.

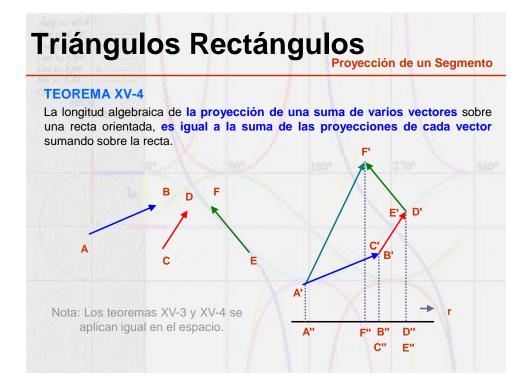
DEMOSTRACIÓN

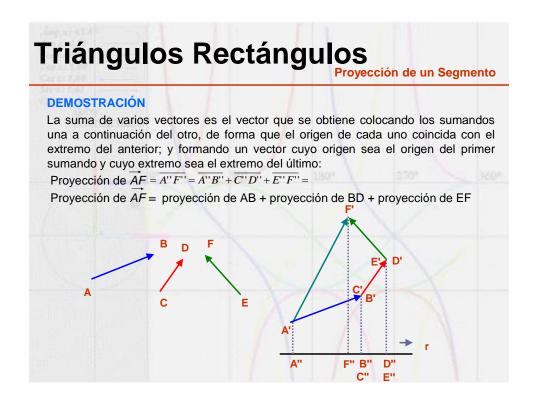
Un vector es un segmento con sentido; de forma que un extremo \underline{A} precede al otro, \underline{B} . \underline{A} se le llama extremo inicial del vector, y a \underline{B} extremo final del mismo.

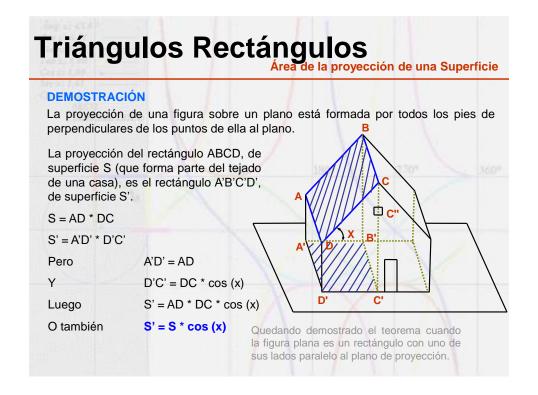




Triángulos Rectángulos


Proyección de un Segmento


La proyección de un vector AB es un segmento algebraico $\overline{A'B'}$; de forma que, en la recta orientada, puede suceder que $\overline{A'B'}$ sea positivo o negativo, según A' preceda o siga a B' en la recta.



cuando el vector y la dirección positiva de la recta forman un ángulo \underline{x} agudo, la proyección resulta positiva y vale |AB| cos x; y cuado \underline{x} es obtuso, resulta negativa, y vale también |AB| cos x, en cuyo caso cos x es negativo, introduciendo el signo que necesita.

Triángulos Rectángulos Área de la proyección de una Superficie

GENERALIZACIÓN

Para generalizar dicho teorema al caso de una figura plana cualquiera, supondremos cubierta dicha figura por n rectángulos iguales a los del caso anterior, de superficie S'₁,S'₂....S'_n.

Donde

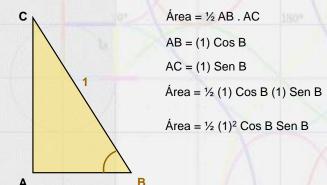
$$S'_1 = S_1 \cos(x)$$

 $S'_2 = S_2 \cos(x)$

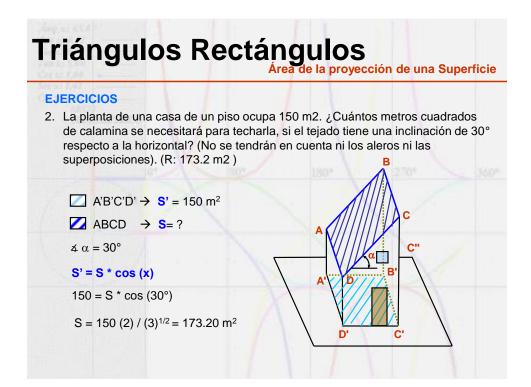
$$S'_2 = S_2 \cos(x)$$

$$S'_n = S_n \cos(x)$$

Sumando miembro a miembro y suponiendo que los rectángulos son tan estrechos que llenan la figura y su proyección, tendremos:


$$S'_1 + S'_2 + \dots + S'_n = S_1 \cos(x) + S_2 \cos(x) + \dots + S_n \cos(x)$$

 $S' = (S_1 + S_2 + \dots + S_n) \cos(x)$
 $S' = S \cos(x)$


Triángulos Rectángulos

Área de la proyección de una Superficie

EJERCICIOS

1. Un terreno tiene forma de triángulo, con hipotenusa 1 y un ángulo agudo B. Calcular su área. (R: ½ (1)2 Sen B Cos B)

