

ESTUDIO TÉCNICO PARA LA CORRECTA SELECCIÓN DE TUBERÍAS A UTILIZAR EN UN TERMINAL MULTIBOYAS

Manuel Fernández-Espinoza

Piura, julio de 2017

FACULTAD DE INGENIERÍA

Departamento de Ingeniería Mecánico-Eléctrica

Fernández, M. (2017). Estudio técnico para la correcta selección de tuberías a utilizar en un terminal multiboyas (Tesis de licenciatura en Ingeniería Mecánico-Eléctrica). Universidad de Piura. Facultad de Ingeniería. Programa Académico de Ingeniería Mecánico-Eléctrica. Piura, Perú.

ESTUDIO TÉCNICO PARA LA CORRECTA SELECCIÓN DE TUBERÍAS A UTILIZAR EN UN TERMINAL MULTIBOYAS

Esta obra está bajo una <u>licencia</u> <u>Creative Commons Atribución-</u> <u>NoComercial-SinDerivadas 2.5 Perú</u>

Repositorio institucional PIRHUA – Universidad de Piura

RESUMEN

En la situación actual mundial es necesario cumplir con todos los requerimientos técnicos para una correcta instalación de líneas submarinas, puesto que el transporte de hidrocarburos a distintos lugares y por diferentes escenarios geográficos representa una notable complejidad debido a que se debe asegurar la calidad y el correcto funcionamiento acorde a la Normativa Legal Peruana y a los estándares internacionales. Siendo los principales a cumplir el Decreto Supremo 081-2007-EM, Normativa API RP 1111 "Diseño, instalación de tuberías offshore" y API 5L "Especificaciones para Tuberías".

Al contar con la tubería que cumpla con todos los requerimientos nacionales e internacionales, se debe establecer el correcto método de instalación que se ajuste a las condiciones específicas del "Proyecto de instalación de líneas submarinas en una refinería de petróleo".

UNIVERSIDAD DE PIUR A

FACULTAD DE INGENIERÍA

Estudio técnico para la correcta selección de tuberías a utilizar en un terminal multiboyas

Tesis para optar el Título de Ingeniero Mecánico Eléctrico

Manuel Antonio Fernández Espinoza

Asesor: MSc. Ing. Jorge Javier Machacuay Arévalo

Piura, julio 2017

Índice

ntroducción			1
Capítulo	o 1 Oleod	luctos offshore en refinerías	3
1.1.	Introdu	cción	3
1.2.	Oleodu	ctos offshore	8
1.3.	Bases of	le diseño de un oleoducto offshore	9
Capítulo	2 Neces	sidades específicas de la Refinería de Talara	11
2.1.	Situaci	ón actual de Refinería Talara	11
2.2.		cia del Proyecto de Modernización de Refinería Talara en las líneas submarinas	12
2.3.	Alcanc	e del "Servicio de instalación de las nuevas líneas submarinas"	14
	2.3.1.	Lugar de ejecución de servicio	14
	2.3.2.	Descripción del proyecto de instalación de nuevas líneas submarinas	16
2.4.		Legal Nacional y normativa internacional relacionado al "Proyecto alación de líneas submarinas"	18
	2.4.1.	Decreto Supremo 081-2007-EM	18
	2.4.2.	ASME B31.4 "Tuberías para Oleoductos"	22
	2.4.3.	ASME B31.3 "Tuberías de procesos"	26
	2.4.4.	API 5L: "Specification for line pipe"	27
		2.4.4.1. API 5L Aplicación submarina u <i>offshore</i>	28
		2.4.4.2. Entregables por parte del fabricante de tuberías	
	2.4.5.	Relación entre estándares API 5L, ASME B31.3, B31.4 y el Decreto Supremo DS-081-2007-EM	

_		ación de las condiciones básicas para la correcta instalación de lín	
3.1.	Determinación del diámetro requerido		. 31
	3.1.1.	Espesor por presión interna	. 31
	3.1.2.	Espesor por corrosión	. 32
	3.1.3.	Verificación de colapso de la tubería por presiones externas	. 33
	3.1.4.	Verificación del colapso de tuberías por propagación de <i>buckles</i> (pandeo)	. 34
3.2.	Selecció	ón de la tubería de acuerdo al tipo de fabricación	. 35
	3.2.1.	Fabricación de tubería tipo SAWL	. 37
3.3.	Evaluac	ción del tipo de instalación de las líneas submarinas:	. 40
	3.3.1.	Condiciones iniciales para la instalación	. 40
	3.3.2.	Método de instalación S-Lay	. 45
	3.3.3.	Método de instalación J-Lay	. 47
	3.3.4.	Método de instalación por rieles	. 49
	3.3.5.	Método de instalación aplicado en Refinería Talara	. 49
Capítulo	4 Anális	sis final sobre tubería submarina a instalar	. 53
4.1.		Utilización de tubería SMLS en el "Proyecto de instalación de líneas submarinas"	
4.2.	Consecu	uencias de una incorrecta elección de tuberías	. 58
	4.2.1.	Derrame de petróleo causó muerte de tortugas	. 58
	4.2.2.	Derrame de petróleo que afecta al litoral en Ventanilla	. 59
	4.2.3.	Doscientos barriles de petróleo fueron derramados en el mar	. 60
	4.2.4.	Amazonía ha sufrido 15 derrames de crudo en 6 años	. 60
Conclusion	ones		. 65
Bibliogra	ıfía		. 67

Índice de Tablas

Tabla 1.	Relación de tanques a utilizar para almacenamiento de crudo NAPO	14
Tabla 2.	Condiciones climáticas de Talara	15
Tabla 3.	Cuadro comparativo entre Normativas Nacionales e Internacionales	28
Tabla 4.	Grados de acero para tuberías de aplicación submarina.	29
Tabla 5.	Cuadro comparativo entre tubería con costura y sin costura	53
Tabla 6.	Listado de Fábricas de Tubería API 5L PSL2 Anexo J	55

Índice de Figuras

Figura 1.	Mapa general de tendido en tierra de tuberías en Estados Unidos	. 4
Figura 2.	Mapa general de tendido offshore de tuberías en Estados Unidos	. 4
Figura 3.	Mapa general de tendido de tuberías en Europa	5
Figura 4.	Mapa general de tendido de tuberías en Sudamérica	. 6
Figura 5.	Mapa general del Oleoducto Nor Peruano	. 7
Figura 6.	Terminal monoboya carga – descarga de un buque mediante Oleoducto Offshore	9
Figura 7.	Área de propiedad de PETROPERU: Refinería Talara	11
Figura 8.	Maqueta general 3D de la Refinería Talara	13
Figura 9.	Vista general 3D de tendido de tubería e interconexión de tanques	15
Figura 10.	Vista 3D de patio de maniobras	16
Figura 11.	Plano de ubicación de tanques para interconexión con líneas submarinas	18
Figura 12.	Diagrama que muestra el alcance de la Normativa ASME B31.4	23
Figura 13.	Especificación de materiales para uso en oleoductos según la aplicación en conformidad con Normativa ASME 31.4	25
Figura 14.	Especificación de materiales para uso en oleoductos según la aplicación en conformidad con Normativa ASME 31.4 (continuación)	26
Figura 15.	Alcance del Aplicación del Estándar ASME B31.3	27
Figura 16.	Dimensiones estándar para tuberías de acero sin soldadura y soldados	36
Figura 17.	Placas biseladas en forma de "U"	37
Figura 18.	Placas "U" antes de proceso de prensado	38
Figura 19.	Diagrama de flujo de proceso de fabricación de tubería SAWL	39
Figura 20.	Rango de aplicación de tubería tipo SAWL	39
Figura 21.	Rango de aplicación para los diversos tipos de tuberías	40
Figura 22.	Mapa de ubicación del proyecto	42
Figura 23.	Análisis batimétrico del área de instalación	43
Figura 24.	Vista isométrica 3D de PLET	44
Figura 25.	Representación gaviones	44

Figura 26.	Embarcación de la embarcación S-Lay semi-sumergible	45
Figura 27.	Configuración de colocación de tuberías mediante el método S-Lay	46
Figura 28.	Configuración de colocación de tuberías mediante el método J-Lay	48
Figura 29.	Ejemplo Monograma API	56
Figura 30.	Página principal: Composite List del API	56
Figura 31.	Detalles de la Empresa Bri Steel a través del API	57
Figura 32.	Efectos negativos a las tortugas en México	59
Figura 33.	Zona afectada en el último incidente en la amazonía	61