

CAPÍTULO 24: RESOLUCIÓN DE TRIÁNGULOS ESFÉRICOS (IV)

Dante Guerrero-Chanduví

Piura, 2015

FACULTAD DE INGENIERÍA

Área Departamental de Ingeniería Industrial y de Sistemas

Esta obra está bajo una <u>licencia</u> <u>Creative Commons Atribución-</u> <u>NoComercial-SinDerivadas 2.5 Perú</u>

Repositorio institucional PIRHUA – Universidad de Piura

UNIVERSIDAD DE PIURA

Capítulo 24: Resolución de Triángulos Esféricos (IV)

D. Ejemplos de aplicación de triángulos esféricos

GEOMETRÍA FUNDAMENTAL Y TRIGONOMETRÍA CLASES

Elaborado por Dr. Ing. Dante Guerrero Universidad de Piura.

CAPÍTULO XXIV:RESOLUCIÓN DE TRIÁNGULOS ESFÉRICOS

D. EJEMPLOS DE APLICACIÓN DE TRIÁNGULOS ESFÉRICOS

EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

Calcular la distancia entre Piura y Buenos Aires, sabiendo que sus coordenadas son:

Piura: latitud 5°11' sur

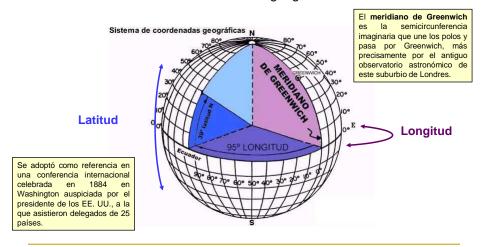
longitud 80°36' oeste

Buenos Aires: latitud 34°35' sur

longitud 58°29' oeste.

Se supondrá (de acuerdo con la definición del metro) que la circunferencia máxima terrestre mide 40000 km.

Recordemos el sistema de coordenadas geográficas



EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

El triángulo formado por el Polo Norte (N) - Piura (P) -Buenos Aires (B.A.), que llamaremos triángulo esférico ACB tiene:

En el P. Norte

∡ A = longitud 80°36' oeste - longitud 58°29' oeste

∡ A = 80°36'- (58°29') = 22°7'

 $\angle A = 22^{\circ}7'$

Lado P. Norte - Piura.

 $b = 90^{\circ} + latitud 5^{\circ}11' sur$

 $b = 90^{\circ} + 5^{\circ}11' = 95^{\circ}11'$

Lado P. Norte - Buenos Aires

 $c = 90^{\circ} + latitud 34^{\circ}35' sur$

 $c = 90^{\circ} + 34^{\circ}35' = 124^{\circ}35'$

El lado a representa la distancia buscada.

∡ A = 80°36'- (58°29') = 22°7'

 $b = 90^{\circ} + 5^{\circ}11' = 95^{\circ}11'$

 $c = 90^{\circ} + 34^{\circ}35' = 124^{\circ}35'$

Caso 1 (dos lados y el ángulo comprendido)

 $\cos a = \cos b \cdot \cos c + senb \cdot senc \cdot \cos A$

	∡A	b	С
	22°7'	95°11'	124°35'
cos	0.92641915	-0.09034289	-0.56760428
sen	0.37649376	0.99591072	0.82330151

cos a = cos b. cos c + sen b. sen c. cosA

cos a	0.81088231	
a°	35.8177744	
a°'"	35°49'03.98"	

360°	 40,000
35.8177	 Χ

X = 3979.74444 Km

Distancia Piura - BB. AA.: 3979.74 Km

EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

Distancia en línea recta

a° r r

d
$$d^2 = r^2 + r^2 - 2r^2 \cos(a^\circ)$$

$$d = \sqrt{2r^2(1 - \cos a^\circ)}$$

$$r = 40,000/2\pi = 6,366$$

$$a^\circ = 35.8177744$$

$$d = 3915.26529$$

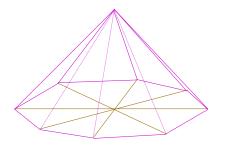
Distancia (línea recta) Piura - BB. AA.: 3915.26 Km

Distancia (Sup. Esférica) Piura - BB. AA. : 3979.74 Km

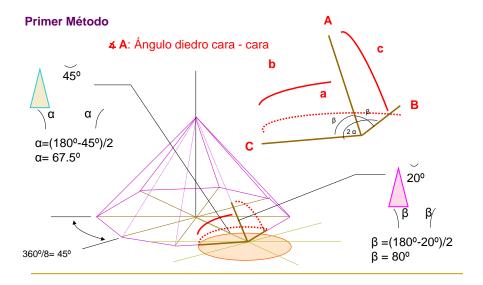
GFT 17/06/2015

EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

El ángulo que forman dos aristas laterales contiguas de una pirámide octogonal regular es 20°. Calcular los diedros laterales de dicha pirámide y el ángulo sólido en el vértice.



EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA



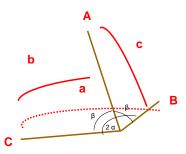
GFT 17/06/2015

EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

▲ A: Ángulo diedro cara - caraa = 2α = 135°

$$b = c = \beta = 80^{\circ}$$

$$\cos A = \frac{\cos a - \cos b \cdot \cos c}{senb \cdot senc}$$



$$\cos A = \frac{\cos 135^{\circ} - \cos 80^{\circ} \cdot \cos 80^{\circ}}{sen80^{\circ} \cdot sen80^{\circ}} = -0.760182$$

$$A = 139.480315^{\circ} = 139^{\circ}28'49.13''$$

EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

Ángulo sólido en el vértice de la pirámide

La superficie de un triángulo rectángulo vale:

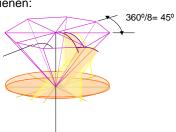
$$S_{t} = \frac{A + B + C - 180^{\circ}}{180^{\circ}} \times \pi \times r^{2} = \frac{69.740^{\circ} + 69^{\circ}.740 + 45^{\circ} - 180}{180^{\circ}} \times \pi \times r^{2} = \frac{4.4806}{180} \times \pi \times r^{2}$$

Los 8 triángulos esféricos que forman el octógono tienen:

$$S_p = 8 \times \frac{4.4806}{180} \times \pi \times r^2$$

El ángulo sólido en el vértice de la pirámide vale:

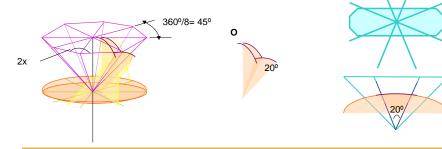
$$\Omega = \frac{S}{r^2} = 8 \times \frac{4.4806}{180} \times \pi = 0.6256$$
 esterorradianes



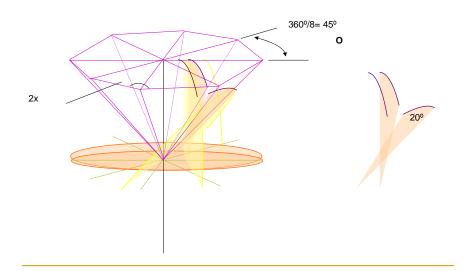
El ángulo que forman dos aristas laterales contiguas de una pirámide octogonal regular es 20°. Calcular los diedros laterales de dicha pirámide y el ángulo sólido en el vértice.

Segundo Método

Cortando dicha pirámide por una esfera de centro en el vértice y radio r, obtenemos un octógono regular esférico:



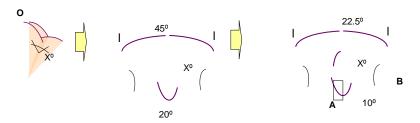
EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA



Uniendo el centro O con los vértices se forman 8 triángulos isósceles.

Tomamos uno cualquiera de ellos:

c



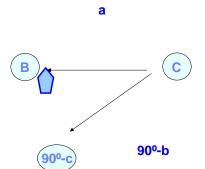
Buscamos el **ángulo diedro (2x)**, por tanto interesa encontrar **4** B en el triángulo esférico rectángulo.

También buscamos el **ángulo sólido** (Ω =S/ r^2), en el vértice de la pirámide, es decir, nos interesa calcular la superficie octogonal esférica.

EJEMPLOS DE APLICACIÓN DE T. ESFÉRICA

Ángulo diedro de las áreas laterales

Descomponiendo el triángulo en 2 triángulos rectángulos, x=B buscando; según la regla mnemotécnica de Néper:



 $\cos C = sen B.sen(90^{\circ} - c) = sen B.\cos c$

$$enB = \frac{\cos c}{\cos c}$$

10°
8480775

sen B = (cos C) / (cosc)

sen B	0.93813186
å	69.7401573
(2x)º	139.480315
(2x)° ' "	139°28'49.13"

Ángulo diedro (2x) = 139°28'49.13"

Ángulo sólido en el vértice de la pirámide

La superficie de un triángulo rectángulo vale:

$$S_{t} = \frac{A + B + C - 180^{\circ}}{180^{\circ}} \times \pi \times r^{2} = \frac{90^{\circ} + 69^{\circ}.740 + 22^{\circ}.5 - 180}{180^{\circ}} \times \pi \times r^{2} = \frac{2.2403}{180} \times \pi \times r^{2}$$

Los 16 triángulos rectángulos que forman el octógono tienen:

$$S_p = 16 \times \frac{2.2403}{180} \times \pi \times r^2$$

El ángulo sólido en el vértice de la pirámide vale:

$$\Omega = \frac{S}{r^2} = 16 \times \frac{2.2403}{180} \times \pi = 0.6256$$
 esterorradianes