

MODELACIÓN Y SIMULACIÓN DEL TRANSPORTE SEGREGADO DE PETRÓLEO A TRAVÉS DE DUCTOS

Christian Guerrero-Asmad

Piura, marzo de 2014

FACULTAD DE INGENIERÍA

Departamento de Ingeniería Mecánico-Eléctrica

Guerrero, C. (2014). *Modelación y simulación del transporte segregado de petróleo a través de ductos.* Tesis de pregrado no publicado en Ingeniería Mecánico Eléctrica. Universidad de Piura. Facultad de Ingeniería. Programa Académico de Ingeniería Mecánico Eléctrica. Piura, Perú.

Esta obra está bajo una <u>licencia</u> <u>Creative Commons Atribución-</u> <u>NoComercial-SinDerivadas 2.5 Perú</u>

Repositorio institucional PIRHUA – Universidad de Piura

UNIVERSIDAD DE PIURA FACULTAD DE INGENIERÍA

"Modelación y simulación del transporte segregado de petróleo a través de ductos"

Tesis para optar el Título de Ingeniero Mecánico Eléctrico

Cristhian Martín Guerrero Asmad

Asesor: MSc. Ing. Daniel Germán Camacho Asmad

Piura, marzo de 2014

A Dios a mi familia,

en especial a ti

madre, siempre en

mi mente y corazón

Prólogo

Los oleoductos son catalogados como el medio de transporte de crudo más seguro. Para reservas de petróleo que se encuentran ubicadas de forma que un mismo oleoducto sirva para llevar los distintos tipos de crudo hacia un destino final, una modalidad de transporte segregado usando raspatubos se aplica para evitar la excesiva mezcla de los crudos en cuestión.

Para un oleoducto en específico, los volúmenes de contaminación que se generan por la configuración de la segregación, son estimados en función a la experiencia del personal operador durante el transporte del crudo desde la estación cabecera hasta el punto de entrega. De no realizarse adecuadamente, la estimación citada podría crear incertidumbre en la calidad del servicio de transporte que afectarían al cargador y consignatario del crudo. Es así, que nace la propuesta para el desarrollo de esta investigación que es un primer paso hacia el entendimiento de la mecánica del movimiento del raspatubo y de los fenómenos que provocan los crecimientos de los frentes de mezcla aguas arriba y aguas abajo del raspatubo.

Deseo agradecer a mi asesor, Ing. Daniel Camacho Asmad, por la paciencia en la revisión y apoyo constante en el desarrollo de la presente investigación. A la sección Energía de la Universidad de Piura por permitirme hacer uso de sus instalaciones y equipos de cómputo. A Petróleos del Perú – PETROPERÚ S.A por el valioso aporte técnico a través del asesoramiento otorgado por el Ing. Rómulo Silva Ángulo. A la sección de Investigación y Desarrollo de ESSS – Perú, por brindarme los conocimientos necesarios para llevar a cabo las simulaciones de la parte estructural. Y a todas las personas que de algún modo han contribuido en el desarrollo del presente trabajo.

Resumen

Se realizó un estudio básico del movimiento de un raspatubo que separa lotes de crudo de 18 y 19.8 grados API@60°F que circulan a razón de 20 000 barriles/día por una tubería de 24 pulgadas de diámetro nominal a 27°C con viscosidades de 524.85 y 272.79 cSt, respectivamente. El estudio considera al raspatubo como un cuerpo rígido que viaja concéntrico a la tubería, asimismo, propone tomar en cuenta una luz equivalente de separación, entre los discos del raspatubo y la tubería, para modelar el flujo de crudo a través del raspatubo cuando este pasa sobre imperfecciones en el ducto.

La velocidad del raspatubo se calculó mediante un balance de fuerzas considerando el rozamiento entre el raspatubo y la tubería. Para calcular la fuerza de rozamiento se necesita conocer la fuerza normal que el raspatubo ejerce sobre la tubería. Esta fuerza normal ha sido calculada utilizando el software Ansys Structural simulando el ingreso del raspatubo a una trampa de lanzamiento y recepción. Se utiliza también un coeficiente de arrastre C_d que ha sido calculado según la fórmula propuesta por Kosugi (Liu 2003). Considerando que el caudal que circula es constante, que el flujo es laminar complemente desarrollado y seleccionando un perfil de velocidades parabólico entre el disco del raspatubo y la superficie interior de la tubería, se ha logrado determinar utilizando el software Ansys Fluent, una longitud de contaminación durante un determinado tiempo en que el raspatubo atraviesa alguna imperfección en el ducto.

Los datos de la simulación arrojan que la longitud de mezcla es menor cuando se sigue una configuración de bombeo de 19.8°API – 18°API.

Índice General

Intro	oducción	I	1	
Capítulo 1 Transporte segregado de petróleo en ductos				
1.1	El pet	róleo y su cadena de valor	5	
	1.1.1.	Tipos básicos	5	
	1.1.2.	Caracterización de los crudos	6	
	1.1.3.	Cadena de valor o cadena de suministro del petróleo	6	
	1.1	1.3.1.Operaciones Upstream: Recolección de crudos	7	
	1.1	1.3.2.Operaciones Midstream: Abastecimiento de crudos	10	
	1.1	1.3.3.Operaciones Downstream: Refino y distribución de combustibles	12	
1.2	Modo	s de operación en el transporte de petróleo crudo	13	
	1.2.1.	Modo de operación de corriente común	13	
	1.2.2.	Modo de operación por lotes segregados	14	
1.3	El uso	de raspatubos en la industria del petróleo	15	
	1.3.1.	Raspatubos separadores	16	
	1.3.2.	Propiedades del material en discos y copas	17	
	1.3.3.	Trampas de envío y recepción de raspatubos	20	
1.4	Objeti	vos del presente trabajo	23	

Capítulo 2		Análisis del movimiento del raspatubo	25		
2.1	Deterr	ninación de la velocidad del raspatubo	25		
	2.1.1.	Velocidad a partir del arrastre en un raspatubo sumergido	25		
	2.1.2.	Coeficiente de arrastre	26		
2.2	Cálcul	o de la fuerza normal	27		
	2.2.1.	Elastómero modelado como un material hiperelástico	28		
	2.2.2.	Geometría y mallado para modelación numérica en Ansys Structural	29		
	2.2.3.	Incremento de la fuerza normal en la pared de la tubería	31		
2.3	Luz ec	uivalente de separación	33		
	2.3.1.	Deformación debida al peso del raspatubo	33		
	2.3.2.	Deformación debida a irregularidades en la tubería	33		
	2.3.3.	Separación temporal de superficies en contacto	34		
	2.3.4.	El enfoque de la luz equivalente de separación	35		
Capítulo 3 Modelación matemática para la determinación de la longitud mezcla					
3.1	Volun	nen de control y régimen de flujo	37		
3.2	Ecuac	iones que rigen el flujo	38		
	3.2.1	Ecuación de conservación de la masa	39		
	3.2.2	Ecuación de la cantidad de movimiento	39		
	3.2.3	Ecuación de conservación de la energía	40		
	3.2.4	Ecuación para el transporte de especies	41		
		3.2.4.1 Difusión de masa en flujos laminares	41		
3.3	Condi	ciones de frontera	41		
	3.3.1	Cálculo del caudal que atraviesa la región anular	42		
	3.3.2	Zona 1	43		
		3.3.2.1 Flujo laminar en región anular	44		
		3.3.2.2 Perfil parabólico	45		
		3.3.2.3 Perfil para un observador en el eje de la tubería	45		
		3.3.2.4 Perfil de velocidades en sistema coordenado móvil	46		
		3.3.2.5 Caída de presión	46		
	3.3.3	Zonas 2 y 3	47		
	3.3.4	Zonas 4 y 5	47		
3.4	Propiedades de la mezcla de fluidos				

Capítulo 4		Simulación numérica de la difusión de un fluido en otro				
4.1	Geom	etría	49			
4.2	Propie	edades de los fluidos	50			
	4.2.1	Propiedades utilizadas en este trabajo	51			
	4.2.2	Estimación de propiedades a partir del ChemCAD	51			
		4.2.2.1 Datos de entrada	51			
		4.2.2.2 Propiedades de salida	53			
4.3	Escen	arios de simulación	53			
4.4	Condi	ciones de contorno en primer escenario de simulación	54			
	4.4.1	Zona 1	54			
		4.4.1.1 Caudal en luz equivalente Q_l	54			
		4.4.1.2 Perfil de ingreso en luz equivalente	55			
	4.4.2	Zonas 2 y 3	57			
	4.4.3	Zonas 4 y 5	57			
4.5	Condi	ciones de contorno en segundo escenario de simulación	57			
	4.5.1	Zona 1	57			
		4.5.1.1 Caudal en luz equivalente Q_l	57			
		4.5.1.2 Perfil de ingreso en luz equivalente	58			
	4.5.2	Zonas 2 y 3	60			
	4.5.3	Zonas 4 y 5	60			
4.6	Estudi	o de independencia de malla	60			
4.7	Evalua	ación de resultados variando presiones	63			
	4.7.1	Resultados a 0kPa para primer y segundo escenario	63			
	4.7.2	Resultados a 5000kPa para primer y segundo escenario	64			
	4.7.3	Resultados a 8000kPa para primer y segundo escenario	64			
	4.7.4	Resultados a 13000kPa para primer y segundo escenario	65			
	4.7.5	Resultados con diferentes presiones en zona 5 para primer escenario	66			
	4.7.6	Resultados con diferentes presiones en zona 5 para segundo escenario	66			
Conc	lusiones	s y Bibliografía	67			
ANE	XO A	RASPATUBOS ROSEN				

- ANEXO B MAPA DE LOTES DE CONTRATOS PETROLEROS
- ANEXO C UDF PARA ZONA 1

Introducción

El caso más simple de operación de un oleoducto es el transporte de un solo tipo de crudo. Cuando se transportan volúmenes de crudo provenientes de distintos lotes (crudos de distintas propiedades), el procedimiento operativo del oleoducto se torna más complejo. El transporte de distintos productos a través de la misma tubería se denomina transporte segregado y genera discusiones y estudios acerca del procedimiento de transporte, una de cuyas variables importantes es la modalidad de segregación que se realizará en base a la calidad y tipo de crudo que se va a transportar.

Las empresas dedicadas al servicio de transporte de crudo, optan por medios adecuados de segregación que garanticen un mejor manejo de los productos transportados. Una de las modalidades de segregación utiliza unos elementos separadores denominados raspatubos, éstos son introducidos a la tubería según una programación con el fin de generar lotes de acuerdo al tipo de crudo que se está bombeando a través del ducto.

Transporte segregado de crudo usando raspatubos

En la industria del petróleo, la empresa que extrae la materia prima suele ser distinta de la empresa que lo transporta al punto donde va a ser refinado y es una tercera empresa encargada de la refinación. Uno de los mayores compromisos que tienen las empresas encargadas del transporte por ductos es el de devolver el crudo con las especificaciones próximas a las cuales les fue entregado en las estaciones de recepción. Se ha registrado que a pesar de tener dispositivos de separación, es inevitable una contaminación del crudo transportado; de manera que una porción de ambos tipos de crudo resultan mezclados, lo

que podría desencadenar posibles efectos económicos negativos si no se cumple con los límites permisibles de variación de los indicadores de calidad o características del crudo. Las empresas comercializadoras que colocan el crudo en el mercado después que ha sido transportado por el oleoducto se interesan por reducir la incertidumbre en los niveles de mezclado de los lotes ya que esto afecta el desempeño económico del lote en la cadena de valor del crudo. Los perjuicios causados por el servicio de transporte de crudo facultan a los usuarios a establecer exigencias a las empresas transportadoras para resarcir pérdidas económicas.

Con la finalidad de establecer las buenas relaciones entre clientes y proveedores, es necesario implementar de manera temprana aspectos contractuales que permitan manejar controversias o conflictos durante la prestación del servicio. En esta situación es necesario estimar de manera adecuada y oportuna los volúmenes de crudo contaminado en cada lote.

Se han desarrollado estudios sobre la mezcla durante el transporte de productos de petróleo sin elemento separador, por ejemplo Sutherland (2000), reporta los resultados de experimentos de laboratorio y simulaciones numéricas de la mezcla de dos fluidos viscosos que fluyen en una tubería en régimen laminar y turbulento. Concha et al. (2006) proponen un modelo matemático para predecir el crecimiento de la zona de mezcla introduciendo un coeficiente efectivo de transferencia de masa que tiene en cuenta el mecanismo de difusión pura y su aporte a la convección. Udoetok y Nguyen (2009), presentan un modelo para estimar el volumen mezclado haciendo uso de un disco imaginario colocado en la interfaz de ambos fluidos, simulando la acción de separación de un raspatubo en forma de disco. Garcia (2011), llevó a cabo un análisis para estimar el volumen de crudo mezclado en un segmento de tubería para varias condiciones de operación. A partir del modelamiento de la tubería, observó que la interface de mezclado es ligeramente mayor cuando el lote de crudo ligero es seguido de un crudo pesado. Analiza el efecto de variables como la longitud y el diámetro del poliducto, y la tasa de flujo sobre el crecimiento del volumen del frente. Patrachari y Johannes (2012) evalúan la mezcla a lo largo de la tubería basándose en un modelo convectivo - difusivo y utilizan un parámetro conocido como coeficiente de dispersión axial propuesto por Sir. G. I. Taylor (1953). Por otra parte, Ohashi y Yanaida (1986), Tomita y Fujiwara (1991) y Khalil et al. (2009) estudian el flujo para el caso de una cápsula cilíndrica que se desplaza coaxialmente a lo largo de una tubería. Cabe resaltar, que ellos estudian el movimiento de un cilindro en una tubería que transporta un solo fluido, de manera que sus modelos y resultados nos brindan un apoyo para entender el movimiento de un raspatubo modelado como cápsula cilíndrica dentro de un ducto. Azebedo et al. (1996) muestran un estudio donde predicen el movimiento de un raspatubo a partir de un modelo hidrodinámico, considerando raspatubos con y sin agujeros en el interior. O'Donoghue (1996) presenta un trabajo bastante completo de la influencia de las presiones en el cálculo de la película lubricante que separa la pared interna de un ducto con la pared externa de los accesorios de un raspatubo de 6 discos. A diferencia del estudio de estos autores, en el presente trabajo el raspatubo separa dos fluidos diferentes, uno a cada lado del raspatubo.

En el capítulo 1 se hace una breve descripción de la cadena de valor del petróleo así como un rápido reporte de los tipos de raspatubos que hay en la industria. En el capítulo 2 se realiza un análisis del movimiento del raspatubo con el fin de encontrar la velocidad con la que viaja a través del ducto. Para esto, es necesario determinar la fuerza normal que el raspatubo ejerce sobre el ducto, la cual se calcula utilizando el software Ansys Structural. Se concluye este capítulo explicando el enfoque de la luz equivalente de separación como un modelo para determinar el caudal de crudo que atraviesa el raspatubo. En el capítulo 3

se describe el volumen de control a utilizar, se presentan las ecuaciones que se utilizarán para simular la difusión del crudo que atravesó el raspatubo en la región aguas debajo del raspatubo y se establecen las condiciones de frontera. En el capítulo 4 se estiman los valores numéricos de las propiedades del fluido así como de las condiciones de frontera. Se describe como se calculan, usando el software ChemCAD, las propiedades faltantes para la simulación numérica. Se describe un estudio de independencia de malla y a continuación se presentan los resultados de la simulación para varios valores de la presión en la salida del dominio de cálculo. Finalmente, se presentan las conclusiones y recomendaciones del presente trabajo.

Capítulo 1

Transporte segregado de petróleo en ductos

1.1. El petróleo y su cadena de valor

Existen numerosas definiciones de petróleo, las cuales no obstante pueden resumirse como sigue: Es un líquido aceitoso, inflamable, con amplia variación en su viscosidad y olor fuerte característico, cuyo color varía de amarillo a castaño rojizo oscuro o negro, pero que normalmente exhibe una fluorescencia verdosa distintiva. Se cree que se formó a partir de sedimentos marinos cercanos a la costa sobre los cuales hubo acción geológica durante millones de años. El petróleo se encuentra por todo el mundo, desde los desiertos hasta las regiones árticas y las plataformas continentales. La configuración de los sitios o yacimientos de los que se extrae varía desde la de cienos superficiales (lodo blando en el fondo) hasta la de infiltraciones subsuperficiales (infiltración lateral); también se le encuentra en diversos tipos de suelos, desde arenas y depósitos de alquitrán hasta en estratos de roca situados a profundidades que varían de unas cuantas decenas a varios miles de metros. El petróleo se extrae en cualquier lugar de la tierra, con la excepción hasta el momento de la Antártida, Groenlandia y áreas costeras adyacentes (Thornton, 1974).

1.1.1 Tipos básicos

Los distintos tipos de petróleo son mezclas no uniformes y altamente complejas de hidrocarburos parafinicos, nafténicos y aromáticos. Contienen pequeñas cantidades de azufre y cantidades todavía más pequeñas de compuestos de nitrógeno y oxígeno. Los términos *parafinico, aromático y asfáltico* (o *nafténico*) se utilizan para nombrar los tipos predominantes de constituyentes químicos encontrados en petróleos crudos de diversas localidades. De modo similar, se emplean los términos *agrio y dulce*. Los crudos agrios contienen azufre y presentan un desagradable y a veces nauseabundo olor a ajo o a huevos podridos. El azufre, que es lo que imparte el olor, existe en forma de mercaptanos o sulfuro de hidrógeno. Los crudos dulces contienen muy poco azufre y tienen olores comparativamente agradables (Thornton, 1974).

1.1.2 Caracterización de los crudos

Al ser un crudo una mezcla de hidrocarburos de diferentes puntos de ebullición, la manera más simple de procesamiento será su separación por destilación en cortes o fracciones de diferente intervalo de ebullición y de aplicación. El conocimiento previo de los rendimientos que se obtendrán, mediante una destilación en condiciones atmosféricas y a vacío, permitirá diferenciar entre sí a los crudos. La cantidad de cortes o fracciones que se utilicen pueden variar desde 4 hasta incluso 24, según las necesidades de las refinerías, pero las siguientes 8 fracciones proveen una adecuada base para la evaluación de un crudo.

Rango	Producto	Rango	Producto
$C_2 - C_5$	Gas	191 – 277 °С	Keroseno
C ₅ -79 °C	Nafta ligera	277 − 343 °C	Gas oil
79−121 °C	Nafta media	343 – 566 °C	Fuel oil
121 – 191 °C	Nafta pesada	566 °C+	Residuo

 Tabla 1.1 Ocho fracciones de análisis base en la evaluación de un crudo

Las características de un crudo son establecidas por la denominada curva TBP (True Boiling Point) y representa la fracción en volumen de líquido recogido en función de la temperatura de destilación en una columna estándar predefinida, a presión atmosférica hasta unos 350 - 370 °C, temperaturas en la que en las condiciones descritas puede empezar a aparecer el craqueo térmico de las moléculas más pesadas. Posteriormente, se continúa la destilación (a presión reducida) hasta 550 - 580 °C que es la máxima temperatura a la que se puede destilar sin que se produzca descomposición térmica del producto en estas condiciones.

1.1.3 La cadena de valor o cadena de suministro del petróleo

Se le llama cadena de valor a una serie de eventos que, con cada paso, agregan valor a una materia prima. En la industria del petróleo dicha cadena de valor también es conocida como cadena de suministro del petróleo y se trata de una extensa red de nodos, cada uno de los cuales involucra una o diversas fases en el proceso de extracción, elaboración y distribución de los productos. Asimismo, los distintos centros de operación interactúan entre sí intercambiando materias primas o productos elaborados, e información vinculada con este proceso.

En la figura 1.1 se representa de forma simplificada una cadena típica de suministro de petróleo. En general, pueden distinguirse tres actividades principales dentro de la red: obtención de crudos, refinación y distribución de productos.

Fig. 1.1 Cadena de suministros de petróleo típica

Fuente: Cafaro C, (2009) p.09[5]

Paralelamente, la industria del petróleo se divide en tres sectores, comúnmente conocidos como "upstream", "midstream" y "downstream", aunque las operaciones "midstream" tienden a incluirse en la categoría "downstream". El sector "upstream" comprende las actividades de exploración y explotación de pozos, así como el flujo de crudos y gas natural hacia las terminales primarias. Las operaciones "midstream" se relacionan a la adecuación, transporte y almacenamiento de crudos, gas natural y gases licuados de petróleo, mientras que el sector "downstream" involucra el procesamiento y la distribución de productos refinados, y sus canales de comercialización.

1.1.3.1 Operaciones "Upstream": Recolección de crudos

La obtención de crudos constituye el eslabón inicial en la cadena de suministros. Los diversos crudos o variedades de petróleo, con diferentes propiedades físicas tales como densidad, viscosidad y composición, se extraen de pozos esparcidos en vastas regiones del planeta. Las tareas de exploración también forman parte de esta operación y comprenden todas las actividades de búsqueda de hidrocarburos que con la ayuda de distintos métodos tratan de inferir la existencia de ambientes propicios para la acumulación de petróleo o gas natural.

En el Perú existen, actualmente, 24 lotes que tienen un contrato de explotación por diversas compañías operadoras. Las cuencas¹ a las cuales pertenecen estos lotes son: Talara, Sechura, Marañon, Ucayali y Tumbes. Por otro lado, existen 50 lotes que se encuentran con contratos para una fase de exploración ubicados en la selva norte, selva central, selva sur, sierra, noroeste y zócalo continental (www.perupetro.com.pe, sección de contratos y convenios, al 30.11.2013). En las tablas 1.1 y 1.2 se muestran los contratos de exploración y explotación citados.

¹ Cuenca: Depresión en la corteza oceánica o continental donde ocurre la acumulación de sedimentos

Zona	a Lote Operador		Zona	Lote	Operador
	39	REPSOL		76	HUNT OIL
	95	GRAN TIERRA ENERGY PERU S.R.L.	Selva sur	108	PLUSPETROL E&P
	102	PLUSPETROL E&P		174	TECPETROL S.A.C.
	109	REPSOL	Siorro	105	SIBOIL DEL PERÚ
	116	MAUREL ET PROM	Sierra	156	GRUPO PETROLERO SURAMERICANO
	123	GRAN TIERRA ENERGY PERU S.R.L.		XIX	BPZ
	129	GRAN TIERRA ENERGY PERU S.R.L.		XXI	GOLD OIL
Solve norte	130	CEPSA PERU		XXII	BPZ
Serva norte	135	PACIFIC STRATUS ENERGY		XXIII	BPZ
	137	PACIFIC STRATUS ENERGY	Noroeste	XXIV	UPLAND
	144	KEI PERU		XXV	VETRA PERÚ
	145	OLYMPIC PERU		XXVI	SAVIA
	160	COMPAÑÍA CONSULTORA DE PETROLEO		XXVII	FAULKNER EXPLORATION
	115	PLUSPETROL E&P		XXVIII	PITKIN PETROLEUM PERU S.A.C.
	161	PAN ANDEAN RESOURCES		Z-33	SAVIA
	183	HYDROCARBON EXPLORATION PLC., SUCURSAL DEL PERÚ		Z-34	GOLD OIL
	58	B PETROBRAS		Z-35	SAVIA
	100	COMPAÑÍA CONSULTORA DE PETROLEO		Z-36	SAVIA
	103	TALISMAN		Z-38	KEI PERU
	107	PETROLIFERA PETROLEUM DEL PERÚ	Zócalo	Z-45	SAVIA
Selva central	114	CEPSA PERÚ		Z-46	MOCHE ENERGY S.A.C.
	126	PETROMINERALES PERU		Z-48	SAVIA
	131	CEPSA PERU		Z-49	SAVIA
	133	PETROLIFERA PETROLEUM DEL PERU		Z-51	SAVIA
	138	PACIFIC STRATUS ENERGY		Z-52	SAVIA

 Tabla 1.1. Contratos en fase de exploración al 30.11.2013.

Fuente: www.perupetro.com.pe, sección de contratos y convenios.

Zona	Lote	Operador	Fecha de suscripción	Fecha de término
	1-AB	PLUSPETROL NORTE	22-mar-86	29-ago-15
Salva Norto	8	PLUSPETROL NORTE	20-may-94	19-may-24
Serva Norte	64	PETROPERÚ	07-dic-95	06-dic-35
	67	PERENCO	13-dic-95	12-feb-31
	31B y 31D	MAPLE	30-mar-94	29-mar-14
Selva Central	31C	AGUAYTIA	31-mar-94	29-mar-34
	31-Е	MAPLE	6-mar-01	5-mar-31
	56	PLUSPETROL PERU CORP.	7-sep-04	06-sep-44
Selva Sur	88	PLUSPETROL PERU CORP.	09-dic-00	08-dic-40
	57	REPSOL	27-ene-04	26-ene-44
	Ι	GMP	27-dic-91	24-dic-21
	II	PETROLERA MONTERRICO	05-Ene-96	04-ene-16
	III	INTEROIL (1)	05-mar-93	04-mar-13
	IV	INTEROIL (1)	05-ene-96	03-mar-13
	V	GMP	08-oct-93	05-oct-23
Noroeste	VII/VI	SAPET	22-oct-93	24-jul-15
	IX	UNIPETRO ABC	17-jun-93	16-jun-13
	Х	PETROBRAS	20-may-94	19-may-24
	XIII	OLYMPIC PERU INC	30-may-96	29-may-36
	XV	PETROLERA MONTERRICO	26-may-98	25-may-18
	XX	PETROLERA MONTERRICO	19-ene-06	18-ene-36
	Z-2B	SAVIA	16-nov-93	15-nov-23
Zócalo	Z -1	BPZ	30-nov-01	29-nov-41
	Z-6	SAVIA	20-mar-02	19-mar-32

 Tabla 1.2. Contratos en fase de explotación al 30.11.2013.

Fuente: www.perupetro.com.pe, sección de contratos y convenios.

1.1.3.2 Operaciones "Midstream": Abastecimiento de crudos

Una vez colectados en el terminal de carga próxima a los yacimientos de explotación, los diferentes tipos de crudo se envían hacia las unidades de refino a través de dos medios de transporte habituales: grandes buques tanque y oleoductos simples de diámetro mayor. Estos últimos constituyen la opción más conveniente, siempre que se disponga de ellos para llevar adelante el transporte. Confiabilidad, puntualidad, seguridad y bajos costos de operación (comparables a los del transporte marítimo) representan los factores más importantes para inclinarse por su utilización.

Los oleoductos y gasoductos en el Perú se encuentran clasificados en ductos mayores, medianos y menores, ver tabla 1.3.

Clasificación de ducto	Operador	Tipo de ducto
	Petróleos del Perú S.A	Oleoducto (Oleoducto Norperuano)
Ductos mayores	Pluspetrol Norte S.A	Oleoductos del Lote 8
	Pluspetrol Norte S.A	Oleoductos del Lote 1AB
	Aguaytía Energy del Perú S.R.L	Gasoductos
	Olympic Perú INC	Gasoductos
Ductos medianos	Graña y Montero Petrolera – GMP	Oleoducto del Lote I
	Petrobras	Gasoductos del Lote X
	Petrotech Peruana S.A	Oleoducto
	Petrolera Monterrico	Oleoductos del Lote II
	Interoil	Ductos del Lote IV
	Interoil	Ductos del Lote III
	Graña y Montero Petrolera – GMP	Ductos del Lote V
Dustas monoras	Graña y Montero Petrolera – GMP	Gasoducto del Lote I
Ductos menores	SAPET	Ductos del Lote VI
	SAPET	Ductos del Lote VII
	SAPET	Gasoducto del Lote VI
	Petrobras	Oleoductos del Lote X
	Unipetro ABC	Ductos del Lote IX

Tabla 1.3.Oleoductos y Gasoductos en el Perú.

Fuente: www.osinergmin.gob.pe, Sección Hidrocarburos > Transporte

Los oleoductos y gaseoductos de los lotes I - VII, IX y X, lotes pertenecientes a la Cuenca de Talara, son ductos que en su mayoría han sido clasificados como menores. En la figura figura 1.2.se muestra la ubicación geográfica de los lotes citados donde se encuentran estos ductos.

Fig. 1.2 Se resalta la ubicación geográfica de lotes pertenecientes a la Cuenca de Talara

Fuente: Adaptada de Mapa de Lotes y Contratos www.perupetro.com.pe

Los oleoductos clasificados como mayores son los que se encuentran uniendo los reservorios de los Lotes 1AB y 8 con las estaciones de bombeo cabeceras del Oleoducto Norperuano, Estación Andoas y Estación 1, respectivamente. En este escenario, los oleoductos no están conectados a una refinería en específico, salvo la refinería El Milagro que se encuentra en la Estación 7 del Oleoducto Norperuano, sino que terminan en un terminal marítimo para luego continuar con el transporte de crudo a través de buques. Ver figura 1.3.

Fuente: Adaptada de Mapa de Lotes y Contratos www.perupetro.com.pe

Al sureste del Perú, en la selva del departamento de Cuzco se encuentran los yacimientos del Lote 88 (Camisea), de los que se extrae gas natural (GN) que es procesado en la planta de separación de Malvinas donde separan los líquidos de gas natural (LGN) y el agua e impurezas son eliminados. El GN y los LGN son transportados por un ducto hasta la planta de fraccionamiento de Pisco donde se obtendrán productos de calidad comercial que son despachados al mercado utilizando ya sea camiones cisterna o buques. Por otra parte, el GN es transportado por selva, sierra y costa hasta el city gate² en Lurín, desde donde es distribuido a Lima y Callao. El ducto que transporta GN es un gasoducto de aproximadamente 729 km que comienza en Malvinas y termina en Lurín. El ducto que transporta LGN es un poliducto³ de aproximadamente 557 km que parte también de Malvinas y llega hasta Pisco. Posteriormente, el consorcio PERU LNG (Hunt Oil, Repsol SK Energy y Marubeni) interconectó, al gasoducto ya existente, un ramal de 408 km que se desprende en la localidad de Chiquintirca (Ayacucho) y llega a la planta de licuefacción llamada Pampa Melchorita ubicada a la altura del kilómetro 170 de la Panamericana Sur (www.rpp.com.pe/2010.06.10). (Ver figura 1.4).

Fuente: Adaptada de Mapa de Lotes y Contratos www.perupetro.com.pe

1.1.3.3 Operaciones "Downstream": Refino y distribución de combustibles

Las refinerías son los componentes de la cadena de suministro que convierten el petróleo crudo en un sinnúmero de productos específicos, aptos para cada prestación. La variedad de compuestos refinados obtenidos en este proceso es realmente amplia. Desde combustibles para vehículos, como naftas, gasoil, y jet-fuel, hasta productos petroquímicos para la fabricación de polímeros, por mencionar sólo algunos. El mercado de los derivados del petróleo es extremadamente complejo y manifiesta un continuo crecimiento. Por esta

² City gate: es una unidad paquete que mide, reduce y regula la presión del gas, normalmente instalada fuera de los límites de una ciudad o un ducto de distribución. Se encarga de suministrar gas a las ciudades e industrias a una presión requerida por el usuario.

³ Poliducto: Tuberías para transportar productos refinados o petroquímicos desde las plantas a los centros de distribución y mercado o embarque.

razón, resulta muy importante establecer mecanismos eficientes para alcanzar una logística ajustada del sistema, que permita abastecer los productos requeridos, en la cantidad y tiempos que exigen las condiciones cada vez más competitivas de los mercados.

Los medios, comúnmente, utilizados para transportar productos refinados son: barcos, trenes, camiones y ductos. En general, la estructura logística de toda cadena de suministro de combustibles hace uso combinado de todos estos medios. El transporte principal de productos desde las refinerías hacia los grandes centros de distribución se realiza mayoritariamente por tuberías múltiples o poliductos. Las razones son muy claras: costos reducidos, confiabilidad y seguridad.

1.2 Modos de operación en el transporte de petróleo crudo

El caso más simple de operación de un oleoducto es el transporte de un solo tipo de crudo. Cuando se transportan volúmenes de crudo provenientes de distintos lotes (crudos de distintas propiedades), el procedimiento operativo del oleoducto se torna más complejo. Se exige que un mismo oleoducto lleve un número de diferentes tipos de crudo en distintos momentos. Se trata básicamente de una cuestión de economía y flexibilidad operativa en cuanto a si una sola línea con lotes de crudo en serie es preferible a numerosas líneas exclusivas donde los crudos pueden fluir en paralelo (Tiratsoo 1992).

Ante el caso de transportar varios tipos de crudo por el mismo oleoducto, las compañías transportadoras definen dos modos de operación diferenciados: el modo de operación de corriente común *(common stream)* y el modo de operación de lotes segregados *(segregated batch)*. Llegado a este punto es preciso aclarar algunas definiciones que se utilizan comúnmente en el negocio del transporte de crudo⁴:

Transportador *(carrier).*- Compañía encargada del transporte de crudo o gas por un ducto, según regulaciones y tarifas acordadas con el cargador. En el Perú, las empresas Petróleos del Perú – Operaciones Oleoducto y Transportador de Gas del Perú TgP, son las encargadas de llevar a cabo la tarea descrita en su oleoducto y gasoducto, respectivamente.

Cargador *(shipper).*- Es la parte que contrata a las empresas transportadoras y que es propietaria del crudo en custodia del transportador. La empresa Pluspetrol contrata a PETROPERÚ para el transporte de crudo de los lotes 1AB y 8 y esta misma empresa junto con REPSOL contratan a TgP (Transportadora de Gas del Perú) para el transporte de GN y LGN de los lotes 57, 56 y 88.

Consignatario.- Es la parte a quien el cargador ha ordenado entregar el petróleo crudo. Los buques que salen del Terminal Marítimo Bayóvar tienen la orden de entregar el petróleo crudo a distintas refinerías que han sido consignadas por Pluspetrol. Del mismo modo, en Pisco salen buques hacia distintos puntos de entrega de LGN consignados por Pluspetrol y/o REPSOL.

1.1.1 Modo de operación de corriente común (common stream)

El petróleo crudo que se transporta a través del oleoducto se mezcla con otros petróleos de calidad y características que son establecidas por el transportador, el cual se basa en los ensayos de crudo (*crude petroleum assay*) y en base a otros datos analíticos pertinentes.

⁴ Las siguientes definiciones y los apartados 1.2.1 y 1.2.2 han sido elaborados a partir del Documento de Reglas y Regulaciones Tarifarias del Oleoducto Crimson California L.P., Cal. P.U.C. No. 27.

En este tipo de operación, el transportista acepta el petróleo crudo advirtiendo que la calidad o gravedad API cambiarán como resultado de la mezcla con otros crudos que son transportados en corriente común. Las empresas transportadoras no están en la obligación de entregar la calidad y gravedad API idénticos del crudo que fue recibido al inicio del transporte.

1.1.2 Modo de operación por lotes segregados (segregated batch)

Una cantidad de petróleo crudo con características específicas identificables que se transportan a través de oleoductos manteniendo su identidad.

Es el tipo de operación en la que se acepta transportar distintos tipos de petróleo crudo que difieren en calidad y otras características siempre y cuando:

- a. El transportista tenga las instalaciones disponibles para separar dichos petróleos crudos mientras están en tránsito hacia un destino indicado.
- b. El transportista no se haga responsable ante el cargador ni ante el consignatario de los cambios en la calidad del petróleo cuando está en tránsito.
- c. La interfase (región de mezcla de crudos) generada entre dichos lotes segregados sea asignada equitativamente entre los envíos que preceden y siguen a la interface.

Definir la secuencia y el tamaño de los lotes segregados, es una tarea sumamente crítica para las empresas transportadoras, las cuales optan por medios adecuados de segregación que garanticen un mejor manejo de los crudos transportados. Si la densidad del petróleo contenido en lotes adyacentes difiere en forma notoria, es indispensable introducir en la línea separadores físicos o "*pigs*" que eviten el denominado efecto "cuña". Este fenómeno se produce cuando la especie más pesada fluye por debajo de la liviana, favoreciendo la indefinición de un lote respecto de otro. Los separadores físicos son introducidos en la tubería según una programación con el fin de generar lotes de acuerdo al tipo de crudo que se está bombeando a través del ducto. (Ver figura 1.5).

Fig.1.5 Transporte segregado de crudo usando raspatubos.

Fuente: Elaboración propia.

Si bien resulta costoso (por el mayor costo de bombeo) y problemático movilizar mecanismos de separación dentro de la tubería, los inconvenientes que genera la variabilidad de las propiedades del petróleo crudo en la unidad de refino muchas veces justifican su uso. En consecuencia, es muy importante minimizar el número de transiciones de crudos en la secuencia de lotes procurando al mismo tiempo mantener abastecidas a las refinerías de la materia prima requerida, en función de los productos que demanda el mercado.

1.2 El uso de raspatubos en la industria del petróleo

En la industria del petróleo se utilizó originalmente el término "*pig*" a unas herramientas de inspección llamadas rascadores Go-Devil, que eran dispositivos impulsados a través de la tubería por el fluido que circula desde la parte posterior de unos rastrillos o rascadores instalados para raspar las paredes internas del ducto. Al pasar por la tubería los rastrillos hacían un sonido característico similar al que producen los cerdos, de ahí el nombre "*pig*", que ahora se utiliza para describir cualquier producto fabricado para pasar a través de una tubería y que es impulsado por el fluido que circula por la misma. (Tiratsoo 1992). Otros autores indican que el término "*pig*" se origina de la primera letra de cada una de las palabras de "*pipeline inspection gauge*". Se utiliza también otros términos para referirse a dichas herramientas de inspección, por ejemplo en México se les denomina "diablos" mientras que en Colombia se suele usar el término "rascadores de tuberías", en la presente tesis se usa el nombre de "raspatubos".

Se han desarrollado una gran variedad de raspatubos, algunos de los cuales se ilustran en la figura 1.6. Por lo general, los raspatubos realizan las siguientes funciones:

- Separación de productos.
- Limpieza de depósitos y desechos.
- Calibración de diámetros internos.
- Ubicación de obstrucciones.
- Remoción de líquidos y gases.
- Medición de la geometría del ducto.
- Inspecciones internas.
- Aplicación de recubrimiento inhibidor de corrosión en la superficie interior del ducto. (Tiratsoo1992)

Fuente: www.enduropls.com

1.3.1 Raspatubos separadores

Los raspatubos empleados para cumplir la función de separación, varían de acuerdo al número de accesorios y a la forma de la estructura metálica donde éstos son instalados. Existen raspatubos donde los accesorios y el cuerpo constituyen una sola pieza de elastómero. Las firmas más grandes de fabricación y comercialización de raspatubos son: ROSEN, ENDURO, T. D. Williamson, etc, recomiendan distintas configuraciones y diseños según el número de accesorios que debería llevar un raspatubo. Dichos raspatubos también son usados para desplazar distintos desechos formados a partir de la construcción de los ductos como: virutas, electrodos de soldadura, espaciadores y otros objetos que accidentalmente caen dentro de la tubería. Asimismo, en líneas donde se requiera desplazar soluciones acuosas, aire o gas inerte, los raspatubos cumplen un rol importante. Ver figura 1.7.

Fig.1.7 Raspatubos separadores

Fuente: www.tdwilliamson.com, www.rosen-group.com, www.enduropls.com

La característica más importante de estos raspatubos es el sobredimensionamiento de los discos y copas (diámetro de discos y copas mayor que el diámetro interior de la tubería) que permiten cumplir la función de sellado dentro del ducto al cual están destinados a ingresar, y es, debido a esta función, por la que se cuida el diseño y las propiedades físicas de los accesorios mencionados. Propiedades como: buena resistencia a la abrasión, resistencia al corte o desgarre, alargamiento, resistencia al desgaste, resistencia al ozono, rango de dureza, etc, son cuidadosamente manejados para dotar al disco y/o copa de la mejor capacidad para cumplir sus funciones. (Ver figura 1.8).

Fig 1.8 (a) Discos y copas, (b)función de sellado de un raspatubo en ducto

Fuente: www.tdwilliamson.com, www.rosen-group.com.

Las dimensiones que un disco puede llegar a tener dependen del diámetro nominal del ducto donde el raspatubo se moverá. En la tabla 1.4, se muestran las características de fabricación para tuberías de 24 pulgadas, en la tabla 1.5 se muestra las dimensiones de los discos de un raspatubo diseñado para una tubería de 24 pulgadas. Observar los diámetros internos que puede tener una tubería de 24 pulgadas y compararlos con el diámetro de los discos del raspatubo de la tabla 1.5.

diámetro	o exterior	espe	esor	diámetro interior		
pulg	mm	pulg	mm	pulg	mm	
		0.25	6.35	23.5	596.9	
24	609.6	0.375	9.525	23.25	590.55	
		0.5	12.7	23	584.2	

Tabla 1.4 Características comerciales de tuberías de 24 pulgadas

Fabla 1.5 Características	de raspatubo	separador para	tuberías de 24	pulgadas
----------------------------------	--------------	----------------	----------------	----------

Fuente: www.rosen-group.com, datasheet Sep 08, 1998.

1.3.2 Propiedades del material de discos y copas

Los elastómeros son el tipo de polímero con el cual están fabricados los discos y copas de los raspatubos, y que junto con los termoplásticos y los termoestables conforman el grupo que surge de clasificar a los polímeros según cómo se encuentran enlazadas las diferentes cadenas de monómeros que los conforman. La principal propiedad que se aprovecha de este material es su considerable capacidad de deformación.

En base a la composición química de la cadena del polímero, los elastómeros se pueden clasificar en distintos grupos (ISO 1629): M, N, O, Q, R, T, U, Z. Las compañías dedicadas a la venta de raspatubos trabajan con estos grupos para diseñar sus propios accesorios según las necesidades requeridas. Tal es el caso de la compañía ROSEN, la cual trabaja con la marca RoPlasthan donde formulan y sintetizan sus propios materiales desarrollando sus soluciones técnicas personalizadas.

En la tabla 1.6 se muestra una comparación de las propiedades mecánicas de elastómeros pertenecientes a distintos grupos químicos con los elastómeros diseñados por la firma ROSEN – RoPlasthan.

	Elastómero							Elastóme	ros ROSE	N RoPlasth	an
	NR (Elastómero natural)	SBR (Elastómero estireno – butadieno)	IIR (Elastómero butilo)	CR (Neopreno)	NBR (Elastómero Nitrilo)	EPDM/EPM (Elastómero etileno – propileno – dieno)	FPM/FKM (Elastómero fluorado)	1100	1200	1300	1500
Dureza Shore A	35 - 95	40 - 95	40 - 85	30 - 90	30-95	25 - 85	50 - 90	55 - 95	55 - 95	65 - 95	70 - 95
Resistencia al desgarro [N/mm ²]	30	25	20	20	25	20	20	55	60	45	50
Alargamiento de rotura [%]	800	450	700	450	500	450	400	800	750	700	550
Máxima temperatura de servicio temporal [°C]	-50-+80	-40-+100	-40-+130	-35-+110	-35-+120	-40-+150	-30-+220	-30-+80	-25-+80	-50-+70	-25-+100
Resistencia a la abrasión [mm ³]	150	170	320	550	330	210	580	<30	<30	<30	<30
Resistencia de propagación de desgarro [N/mm]	15	20	20	7	15	15	10	80	85	55	60
Elasticidad	++	+	+	+	+	+	-	++	++	++	++
Envejecimiento, oxidación	0	+	+	+	0	++	++	++	++	+	++
Resistencia al clima y al ozono	-	-	-	++	0	++	++	++	++	+	++
Resistente contra:											
Petróleo y ceras	-	-	-	+	++	-	++	++	++	+	++
Gasolina	-	-	-	0	++	-	++	++	++	0	++
Hidrocarburos	-	-	-	0	++	-	++	++	++	0	++
Ácidos	+	+	+	+	0.	++	++	-	-	+	+
Alcalinos	+	+	+	+	0	+	++	-	-	+	+

Tabla 1.6 Propiedades de los elastómeros ROSEN RoPlasthan – Comparación con otros elastómeros.© 2013 ROSEN Swiss AG. All Rights Reserved. RoPlasthan – VP – 301_DS_E_2.0_201308.

Fuente: www.rosen-group.com

1.3.3 Trampas de envío y recepción de raspatubos

Un raspatubo ingresa a un ducto a través de una configuración de tubería llamada *trampa de envío* de raspatubos, del mismo modo, es extraído de un ducto a través de una *trampa de recepción* de raspatubos. En una estación de bombeo, las trampas se encuentran juntas y presentan un modo de funcionamiento similar. En esencia, una trampa de recepción y envío de raspatubos presenta una sección de tubería con un diámetro de 2 a 4 pulgadas mayor que el diámetro de la tubería principal, y termina en una sección completa de apertura y cierre rápidos. En la trampa de envío, el raspatubo es empujado desde el barril hasta la entrada de la tubería principal de modo que pueda ser impulsado por la presión del producto transportado. En la trampa de recepción, el raspatubo se detiene una vez que se introduce en el barril dado que el flujo de la línea pasa a su alrededor y no puede impulsarlo más, ver figuras 1.9, 1.10 y 1.11.

Fig. 1.9 Trampa de recepción y/o envío de raspatubos, se muestra la válvula de entrada (1), compuerta de cierre rápido (2), líneas que conectan la trampa con el ducto principal, las cuales se usan cuando el raspatubo se recibe o se despacha (3), válvula bypass de la trampa de raspatubos, la cual permanece abierta cuando la trampa no está en uso (4) y válvula de drenaje (5)

Fuente: Vincent 1984, p150 [23]

Fig. 1.10. Trampa de lanzamiento de raspatubo.

Fuente: Liu 2003,p312 [13]

Fig. 1.11. Trampas de lanzamiento y recepción de raspatubos. Estación 7 Oleoducto Norperuano.

Fuente: Manual de Operaciones Estación 7 – Operaciones Oleoducto Petróleos del Perú – PETROPERÜ S.A

Una trampa se diseña con la finalidad de poder aislar un raspatubo de la línea principal (recepción de raspatubos) o para impulsar eficientemente un raspatubo con el flujo que pasa por la línea principal (envío de raspatubo). Las trampas están equipadas con todas las instalaciones necesarias para drenar con facilidad el flujo remanente en los tanques colectores de modo que puedan abrirse para introducir o retirar el raspatubo. El barril de la estación receptora debe estar diseñado lo suficientemente largo para dar cabida a dos raspatubos, mientras que en la trampa de salida, este barril no debe ser demasiado largo, para que el operador pueda empujar fácilmente el raspatubo hasta insertarlo en la parte más estrecha del ducto, ver figura 1.12.

Fig. 1.12. En la parte superior, barril conteniendo dos raspatubos recibidos; parte inferior, barril conteniendo un raspatubo próximo a ser lanzado.

Fuente: T.D. WILLIAMSON 1993, TDW Pub. No 30138. January 1993. Bulletin Number 351 [22].

1.4 Objetivos del presente trabajo

Como ya se mencionó en el apartado 1.3.1, el diámetro de discos y copas de un raspatubo está sobredimensionado respecto al diámetro interior de la tubería, esto nos hace pensar que no debería haber flujo entre el borde exterior de discos o copas y la pared interior del ducto durante el transporte de lotes segregados separados por raspatubo. Sin embargo, la experiencia demuestra que hay una mezcla de crudo a ambos lados del raspatubo lo que confirma que existe flujo a través del raspatubo en ambas direcciones, esto es, para un observador que se desplaza con el raspatubo ocurre flujo aguas arriba y flujo aguas abajo del raspatubo, generando de esta manera las llamadas interfaces o frentes de mezcla. (Ver figura 1.13)

Fig. 1.13. Flujo aguas arriba y aguas abajo del raspatubo

Fuente: Elaboración propia

En el presente trabajo se ha supuesto que el flujo en ambas direcciones ocurre momentáneamente debido a la deformación que sufren los discos o copas cuando pasan a través de una irregularidad o deformación en la superficie interna del ducto (abolladuras, ovalidades, arrugas y penetraciones de soldadura). El incremento de la longitud de mezcla en una determinada región del raspatubo depende de la cantidad de fluido que pasa a dicha región y de la difusión de este fluido en el otro crudo. El objetivo del presente trabajo es determinar, la longitud de la región en la que ocurre la mezcla inmediatamente aguas abajo del raspatubo al haber transcurrido un intervalo de tiempo corto después de que el raspatubo pasó sobre una irregularidad de la superficie interior del ducto.

Hay que mencionar que debido al efecto conjunto del flujo hacia la región aguas arriba del raspatubo y de la película de crudo que hay entre la pared de la tubería y el disco, se produce la mezcla en la región aguas arriba del raspatubo. Para estudiar la longitud de la región en la que ocurre la mezcla teniendo en cuenta esta película de fluido se requiere utilizar la teoría desarrollada por la tribología. Podrían presentarse dos situaciones:

- a) Hay contacto directo entre las irregularidades y asperezas de la pared interior del ducto y la pared exterior del disco. La carga del disco es soportada tanto por las rugosidades y asperezas de la pared interior del ducto como por el líquido que queda atrapado en dichas crestas y valles (ver figura 1.14, a)
- b) Existe una película que separa las rugosidades y asperezas de la pared interior del ducto y la superficie exterior del disco (ver figura 1.14, b). La carga del disco es soportada por la película.

No es el objeto de este trabajo determinar el tamaño de la región de mezcla aguas arriba del raspatubo que necesitaría incorporar fundamentos tribológicos en el modelo que se utilice.

Fig. 1.14 Crudo atrapado en la rugosidad del ducto debido al contacto lineal deslizante en disco/ducto.

Fuente: Elaboración propia.

Capítulo 2

Análisis del movimiento del raspatubo

Se desarrolla el análisis de movimiento para un raspatubo simple de dos discos que viaja en una tubería recta. Además, se considera que el flujo siempre va de izquierda a derecha, de manera que la región de interés para nuestro estudio se ubica inmediatamente aguas abajo del disco frontal del raspatubo. (Ver figura 1.13).

2.1 Determinación de la velocidad del raspatubo

Se considera que el raspatubo se mueve a través del ducto con una velocidad constante V_p como se esquematiza en la figura 2.1.

2.1.1 Velocidad a partir del arrastre en un raspatubo sumergido

Dada la existencia de un contacto con fricción entre los discos del raspatubo y el ducto, el raspatubo se mueve con una velocidad V_p menor que la velocidad media del flujo V. El flujo crea una fuerza de arrastre F_D en el raspatubo igual a:

Fuente: Elaboración Propia

$$F_D = C_D A \rho (V - V_p)^2 / 2$$
 Ec. 2.1

Durante el movimiento en estado estacionario, la fuerza de arrastre F_D es igual en magnitud pero en dirección opuesta a la fuerza de fricción de contacto F_f es decir,

$$F_D = F_f = \eta N$$
 Ec. 2.2

N es la suma escalar de todas las fuerzas normales que los discos del raspatubo ejercen sobre la tubería en la dirección radial (este valor es calculado posteriormente, ver sección 2.2 del presente capítulo), η es el coeficiente de fricción. Eliminando F_D de las ecuaciones 2.1 y 2.2 obtenemos,

$$V - V_p = \sqrt{\frac{2\eta N}{C_D \rho A}}$$
 Ec. 2.3

Se define $V_d = V - V_p$ y entonces se puede escribir la ecuación 2.3 como:

$$V_d = \sqrt{\frac{2\eta N}{C_D \rho A}}$$
 Ec. 2.4

La relación $V_d = V - V_p$ muestra que la velocidad del raspatubo, para un tramo recto, es más pequeña que la velocidad del fluido en una cantidad igual a V_d . La magnitud de V_d es directamente proporcional a la raíz cuadrada del coeficiente de fricción de contacto y de la fuerza normal entre el raspatubo y el ducto, y es inversamente proporcional a la raíz cuadrada del coeficiente de arrastre C_D , de la densidad del fluido y del área de sección transversal del ducto A.

Entonces, conocida la velocidad media del fluido V y la velocidad V_d , está determinada la velocidad del raspatubo V_p :

$$V_p = V - V_d$$
 Ec. 2.5

2.1.2 Coeficiente de arrastre

El coeficiente de arrastre C_D depende en gran medida del tamaño y cantidad de discos del raspatubo, así como también del grado de sellado que tienen los discos con el ducto. La determinación de este coeficiente se lleva a cabo mediante pruebas en laboratorio. Según Liu (2003, p314), el coeficiente de arrastre para un raspatubo de dos discos, uno en el frente y otro en la parte posterior, puede ser aproximado por la fórmula,

$$C_D = \frac{4k_d^4}{(1-k_d^2)^2}$$
 donde $k_d = \frac{D_d}{D}$ Ec. 2.6

la cual fue obtenida por Kosugi (1985) y predice dicho coeficiente con un error del 20%, k_d es la razón de diámetros. El significado de cada término se explica en la sección 2.3.4.

2.2 Cálculo de la fuerza normal

Al pasar por la reducción cónica o sección de reducción que comunica el barril de lanzamiento en la trampa de raspatubos con el diámetro principal del ducto, los discos del raspatubo sufren una primera deformación. (ver figura 2.2).

Fuente: Adaptada de www.tdwilliamson.com

En la figura 2.3: (a) y (b), se muestra la trampa de lanzamiento y recepción de raspatubos ubicada en el km "0" del Oleoducto Norperuano, en (c) se muestra un modelo geométrico de dicha trampa.

Fig. 2.3. (a) Compuerta que permite el ingreso de raspatubos. (b) Líneas finales del sistema de presurización en Trampa de lanzamiento para ingreso del raspatubo a través de la sección cónica que converge al diámetro interno *D* del ducto. (c) Modelo geométrico de un raspatubo de 2 discos que ha ingresado a la sección principal del ducto.

Fuente: (a) y (b) Manual de operaciones Estación 1 – PETROPERÚ. (c) Elaboración propia.

El material con el que están fabricados los discos del raspatubo es un elastómero. Dichos discos sufren deformaciones notorias al ingresar al ducto y ejercen una fuerza que tiene una componente normal a la superficie del ducto y que hay que determinar puesto que es un dato necesario para cálculos posteriores.

2.2.1 Elastómero modelado como un material hiperelástico

Para determinar la componente normal de la fuerza del raspatubo sobre el ducto se utilizó el software Ansys Structural. Dicho software utiliza el modelo de Yeoh de tercer orden para simular el comportamiento de un elastómero. El modelo de Yeoh de tercer orden se basa en la ecuación de densidad de energía de deformación propuesta en el modelo de Mooney – Rivlin y su forma general es:

$$W = \sum_{i=1}^{N} C_{i0} \left(\overline{I_1} - 3 \right)^i + \sum_{i=1}^{N} \frac{1}{d_i} (J - 1)^{2i}$$
 Ec. 2.7

El modelo de tercer orden se obtiene para N=3

$$W = C_{10}(\overline{I_1} - 3) + C_{20}(\overline{I_1} - 3)^2 + C_{30}(\overline{I_1} - 3)^3 + \frac{1}{d_1}(J - 1)^2 + \frac{1}{d_2}(J - 1)^4 + \frac{1}{d_3}(J - 1)^6$$
 Ec. 2.8

donde C_{10} , C_{20} , C_{30} y d_1 , d_2 , d_3 son constantes que se determinan empíricamente para cada material, I_1 es el primer invariante de deformación y J es la relación volumétrica que es el cociente del volumen final entre el volumen inicial.

Los valores de las constantes para el modelo de Yeoh están dados en la tabla 2.1.

Tabla 2.1.Valores de las constantes del material del modelo de 3er Orden de Yeoh

Consta	ntes del material MPa
$C_{_{10}}$	0.77062
$C_{_{20}}$	-0.38631
$C_{_{30}}$	0.19685

Fuente: Base de datos Ansys Workbench 14.5

En el presente trabajo se considera que los discos del raspatubo son de un elastómero cuya curva de esfuerzo-deformación experimental se muestra en la figura 2.4 (a) (curva experimental proporcionada por Axel Products Physical Testing Services, www.axelproducts.com). Dicha curva experimental se aproxima utilizando el modelo de Yeoh, la curva esfuerzo-deformación según este modelo se muestra en la figura 2.4 (b).
Fig. 2.4 Curvas de esfuerzo-deformación uniaxial. (a) Elastómero de Ansys Data Base obtenida por Axel Products. (b) Ajuste de curva según el modelo de Yeoh de 3er Orden.

Fuente: Base de datos Ansys Workbench 14.5.

2.2.2 Geometría y mallado para modelación numérica en Ansys Structural

Como se mencionó, se utilizó el software Ansys Structural para determinar la fuerza normal de contacto entre disco y tubería. Este software utiliza el método de elementos finitos para determinar dicha fuerza. En este análisis el barril de la trampa de lanzamiento y parte de la tubería principal se han considerado como cuerpos rígidos empotrados desde un punto arbitrario (soporte fijo). El raspatubo ubicado en un determinado lugar antes de la reducción cónica se desplaza 1000 mm con dirección a la sección principal del ducto de modo que ambos discos se deformen al pasar por la reducción (ver figura 2.5). Las fuerzas en la tubería correspondientes al último paso de tiempo de la simulación han sido registradas.

Fuente: Elaboración Propia

En la figura 2.6 y en la tabla 2.2 se muestran las características geométricas del raspatubo y de la trampa. En la tabla 2.3 se muestran los datos del mallado. En la figura 2.7 (a) se observa el mallado para el raspatubo y la trampa de lanzamiento usados en el cálculo de la fuerza normal, en (b) se observa una distribución de esfuerzos calculada con Ansys Structural cuando el raspatubo ha atravesado completamente la sección cónica de la trampa de lanzamiento.

Fig. 2.6 Dimensiones en milímetros de (a) raspatubo y (b) trampa de lanzamiento

Fuente: Elaboración propia

Tabla 2.2 .	Especificaciones	geométricas	para el 1	modelo	computacional	desarrollado	en
		Ansys	Structu	ral.			

Raspatubo y Discos		Trampa de lanzamiento		
Longitud total	560	Diámetro menor (interno ducto)	581.66	
Diámetro de los discos	590	Diámetro mayor	683.26	
Espesor de los discos	30	Longitud de conicidad	508	
Diámetro del núcleo	167	Longitud de ingreso de raspatubo	1000	
Longitud del núcleo	500	Unidades en n	nilímetros	

Fuente: Elaboración propia

Respecto al mallado, en la tabla 2.3 se observan el número de nodos y elementos presentes en cada geometría de análisis. Además, se muestran dos indicadores de calidad de malla denominados Aspect Ratio y Skewness. El Aspect Ratio nos indica la razón o relación que hay entre el ancho y altura de cada elemento de malla, valores iguales a 1 indicaran una proporción exacta mientras que valores más altos indican una desproporción. El Aspect ratio resultante de 1.1052 nos indica una razón de ancho y altura promedio bastante óptima que tienen los elementos del mallado. Por otro lado, el Skewness nos da la idea de la oblicuidad o falta de simetría que tienen los elementos de la malla, un valor igual a 1 nos indica que el elemento se encuentra totalmente distorsionado, mientras que un valor igual a 0 nos indica que el elemento es totalmente simétrico. El valor de Skewness obtenido resultó ser de 0.0181 nos indica una simetría promedio óptima que tienen los elementos del mallado.

	Raspatubo	Tubería	Total
Número de nodos	6012	5738	11750
Número de elementos	1877	1563	3440
Valor promedio de Aspect ratio		1.1052	
Valor promedio de Skewness		0.0181	

Tabla 2.3Datos del mallado para modelo geométrico

Fuente: Elaboración propia.

Fig. 2.7. Modelos para análisis con elementos finitos. (a) Mallado de raspatubo de 2 discos y trampa de envío de raspatubos. (b) Distribución de esfuerzos sobre disco y ducto, calculados cuando el raspatubo ha ingresado completamente a la sección con diámetro *D* del ducto.

Fuente: Elaboración propia.

2.2.3 Incremento de la fuerza normal en la pared de la tubería

En la figura 2.8 se muestra el desplazamiento del raspatubo desde una posición inicial en la que el disco frontal está en la parte cónica del barril de la trampa de lanzamiento, correspondiente al punto 0 del eje s, hasta que el disco posterior haya ingresado a la tubería principal. En esta última condición el disco frontal está en la posición correspondiente al punto 3 del eje s. Cuando el disco frontal viaja desde la posición correspondiente al punto 0 hasta el punto 1 en el eje s, el disco frontal cruzó la zona cónica y ha ingresado a la tubería principal. Como se aprecia en la figura 2.9, la fuerza normal se ha incrementado gradualmente debido a la deformación cada vez mayor del disco. Cuando el disco frontal viaja de la posición correspondiente al punto 1 hasta el punto 2, el disco frontal no sufre deformación adicional por lo que no varía la fuerza normal (el disco posterior aún no se deforma) y cuando el disco frontal está en la posición correspondiente al punto 2, el disco posterior aún no se deforma) y cuando el disco frontal está en la posición correspondiente al punto 2, el disco posterior aún no se deformación adicional por lo que no varía la fuerza normal (el disco posterior aún no se deforma) y cuando el disco frontal está en la posición correspondiente al punto 2, el disco posterior aún no se deformación está por ingresar a la tubería principal. Cuando el disco frontal llega a la posición

correspondiente al punto 3 el disco posterior ya cruzó la región cónica e ingresó a la tubería principal. Entre 2 y 3 el disco posterior sufre una deformación cada vez mayor lo que provoca el incremento continuo de la fuerza normal desde el valor que ya había alcanzado por la deformación del disco frontal. La fuerza normal final calculada es 3845.6 N y corresponde a la sumatoria escalar total de todas las fuerzas normales en cada punto de contacto de ambos discos sobre el ducto.

Fuente: Elaboración propia.

El valor de *s* correspondiente a los puntos 0, 1, 2 y 3 indican la distancia recorrida por el disco frontal del raspatubo desde la posición inicial. La distancia total recorrida es de 1000 mm y corresponde al punto 3.

Fuente: Elaboración propia.

2.3 Luz equivalente de separación

2.3.1 Deformación debida al peso del raspatubo

Uno de los tipos de raspatubos usados para limpieza y transporte de crudo en lotes segregados, cuenta con un núcleo de acero y varios discos que cumplen distintas funciones según su geometría y propiedades que los caracterizan. Desde el primer momento en que un raspatubo descansa sobre la tubería, el peso del mismo comunica una deformación en los discos que lo soportan. Para tener una idea de dicha deformación, se presenta en la figura 2.10 una configuración de raspatubo que tiene discos selladores y discos guía, en este caso son los discos selladores los primeros en deformarse.

Fig. 2.10 Deformación en discos debido al peso del raspatubo.

Fuente: Almacenamiento de raspatubos Estación 09 Oleoducto Norperuano. PETROPERÚ.

2.3.2 Deformación debida a irregularidades en la tubería

Así como el peso de un raspatubo puede producir una deformación notoria en un disco o copa; en la tubería se presentan a menudo distintas irregularidades (abolladuras, ovalidades, arrugas, etc.) ocasionadas por agentes externos y que conllevan a deformaciones de los discos aún más fuertes que las debidas al peso. En la figura 2.11 se observan distintas irregularidades que se pueden producir en un ducto.

Fig. 2.11 Eventos que provocan una discontinuidad en el sellado de los discos y copas de un raspatubo separador.

(a) abolladuras

Fuente: (a) www.ge-energy.com , Integrity Engineering - www.esservices.com, Dented Repairs. (b) www.maverickinspection.com. Laser pipe profiling. (c) www.mie.uth.gr. Spyros A. Karamanos. 2009. Structural integrity of steel oil & gas pipelines with local wall distortions. Department of Mechanical Engineering. University of Thessaly. (d) y (e) A. O'Donoghue. Why pigs get stuck and how to avoid it. Pipeline Research Limited, Glasgow, UK.

2.3.3 Separación temporal de superficies en contacto

Adicionalmente a la deformación, las irregularidades propician una separación temporal de la pared externa de discos y copas respecto de la superficie interior del ducto que están sellando. En esta separación temporal, se crean espacios por donde el crudo circula y, dependiendo del tiempo de apertura y del sentido de flujo, una cantidad de crudo habrá pasado a un determinado frente del raspatubo. En la figura 2.12 se describe una posible sucesión de eventos que ocasionarían la separación temporal entre el disco y la superficie interior del ducto. Desde 1 a 3, el disco se mantiene adherido a la pared del ducto y continúa así hasta llegar a los puntos 4 y 5 que es donde el disco se separa de la superficie interior del ducto. En estos últimos puntos, el disco se libera de la presión que ha adquirido en su paso por la abolladura y salta hacia la superficie del ducto para continuar su función de sellado; es en este salto en donde el disco se separa de la superficie del ducto y el paso del crudo hacia el otro frente del raspatubo se hace posible. Lo mismo ocurrirá en el disco posterior y una porción de crudo pasará al espacio que se encuentra entre los dos discos.

Fig. 2.12 Deformación de un disco en su paso a través de una abolladura en ducto

Fuente: Elaboración propia

En una misma tubería se presentan distintas deformaciones cuya morfología variará según la distribución de los esfuerzos que las originaron. Obtener un modelo matemático que, en un análisis conjunto de las características de deformación en el ducto, parámetros de bombeo y tipo de respuesta del material elastomérico, logre determinar las fuerzas hidrodinámicas generadas cuando el fluido fluye a través del raspatubo (Ver figura 2.13) y de esta manera se pueda calcular el espacio de separación entre la pared externa del disco y pared interna de la tubería, resulta bastante complejo y está más allá del objeto del presente trabajo.

Fig. 2.13 Fuerzas hidrodinámicas del fluido sobre el raspatubo

Fuente: Elaboración propia

2.3.4 El enfoque de la luz equivalente de separación

En este trabajo se plantea un modelo simple para tratar de predecir, aproximadamente, la longitud de la región de mezcla aguas abajo del disco frontal del raspatubo de dos discos. Este modelo simple incorpora un parámetro geométrico que llamaremos *luz equivalente de separación h*, el cual representa el grosor de un espacio uniforme idealizado entre la superficie de los discos y/o copas y la pared interna de la tubería por el cual circularía el

caudal que realmente cruza el raspatubo cuando éste pasa por una irregularidad, ver figura 2.14.

En la ecuación 2.6 del coeficiente de arrastre se define la razón de diámetros k_d donde D_d es el diámetro idealizado del disco del raspatubo de modo que existe un espacio anular de separación igual a la luz equivalente de separación h, se cumple entonces que $D_d = D - 2h$, donde D es el diámetro interior del ducto.

Fig. 2.14 Luz equivalente de separación

Fuente: Elaboración propia

te trabajo se considera que el valor de la luz equivalente h es de 1mm. Este va ia ser corroborado con resultados experimentales, los cuales no forman parte da presente tesis debido a la falta de equipos.

Capítulo 3

Modelación matemática para la determinación de la longitud total de mezcla

Como se mencionó en el capítulo anterior, cuando un raspatubo con un determinado número de discos y copas pasa a través de una imperfección en la superficie interior del ducto, surgen deformaciones que provocan la separación entre la pared exterior de dichos accesorios con la superficie interior del ducto permitiendo así el paso de crudo de un lado a otro del raspatubo. El modelo utilizado para representar este fenómeno plantea la existencia de una región anular, determinada por la luz equivalente de separación h, la cual es atravesada por el crudo que pasa de un lado a otro del raspatubo. Este estudio tiene por objeto determinar la longitud de la región de mezcla debido a la difusión del crudo que cruza el raspatubo desde la región aguas arriba hacia la región agua abajo durante el corto intervalo de tiempo que demora el raspatubo en pasar sobre la irregularidad de la superficie interior del ducto.

El propósito de este capítulo es el de presentar las ecuaciones que gobiernan el flujo de fluidos newtonianos incompresibles, así como la difusión de un fluido en otro en una determinada región donde se llevará a cabo la mezcla de crudos.

3.1 Volumen de control y régimen de flujo

Para determinar la longitud de la región de mezcla de crudos, se utiliza un volumen de control móvil que ocupa una región inmediatamente después del disco frontal del raspatubo y que viaja a la misma velocidad de éste. El volumen de control es una región cilíndrica de diámetro igual al diámetro del ducto y de longitud L que contiene solamente fluido. En el caso específico del Oleoducto Norperuano, si se considera un tramo con

diámetro nominal de 24 pulgadas y con paredes de 0.55 pulgadas de espesor, el diámetro interior del ducto es 0.58166 metros. En este caso, el volumen de control sería un cilindro de 0.58166 metros de diámetro y de 2 metros de longitud. (Ver figura 3.1).

Fuente: Elaboración propia

Considerando que por el ducto circula un caudal de 20000 barriles/día de crudo con las características dadas en la tabla 3.1, se encuentra que el número de Reynolds es Re = 153.49 (si circula un crudo de 18°API) y Re = 295.32 (si circula un crudo de 19.8°API). Como se puede observar, en ambos casos Re < 2300 por lo que el flujo en el ducto es laminar. Se considera que el flujo está completamente desarrollado, que es axisimétrico y que la velocidad tiene componente solamente en la dirección axial.

Tubería - 24 g diámetro no	oulgadas ominal		Fluidos		Número de Reynolds
Espesor de tubería (pulg - m)	Diámetro interno D tubería (m)	Velocidad del fluido v a 20000 barriles/día (m/s)	Designación crudo	Viscosidad cinemática v (cSt)	$\operatorname{Re} = \frac{\rho VD}{\mu} = \frac{VD}{\upsilon}$
0.55 - 0.01397	0.58166	0.1385	18 API60°F	524.85	153.49
			19.8 API60°F	272.79	295.32

Tabla 3.1.	Características g	geométricas del	ducto y de los	fluidos utilizados.
------------	-------------------	-----------------	----------------	---------------------

Fuente: Elaboración propia

3.2 Ecuaciones que rigen el flujo

Las ecuaciones que rigen el flujo laminar en el volumen de control son las ecuaciones de Navier – Stokes y que se derivan al hacer un balance de masa, cantidad de movimiento y energía.

3.2.1 Ecuación de la conservación de la masa

La ecuación para la conservación de la masa o ecuación de la continuidad en su forma general se muestra a continuación:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) = 0 \qquad \text{Ec. 3.1}$$

Siguiendo la nomenclatura utilizada en el software Ansys Fluent se considera que el eje x tiene la dirección axial, con un subíndice r se refiere a la dirección radial y con el subíndice z a la dirección transversal, como se muestra en la figura 3.2.

Fuente: Elaboración propia

Por ser completamente desarrollado \vec{V} no es función de *x*. Por haber simetría axial *V* no es función de *z*.

$$\vec{V} = V_r(r)\hat{e}_r$$

Para geometrías 2D axisimétricas, la ecuación de la continuidad se simplifica y está dada por:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho V_x) + \frac{\partial}{\partial r} (\rho V_r) + \frac{\rho V_r}{r} = 0$$
 Ec. 3.2

donde x es la coordenada axial, r es la coordenada radial, V_x es la velocidad axial y V_r es la velocidad radial.

3.2.2 Ecuación de la cantidad de movimiento

La ecuación resultante de un balance del momento para un marco de referencia inercial se muestra a continuación:

$$\frac{\partial}{\partial t} \left(\rho \vec{V} \right) + \nabla \cdot \left(\rho \vec{V} \vec{V} \right) = -\nabla p + \nabla \cdot \vec{\tau} + \rho \vec{g} + \vec{F}$$
 Ec. 3.3

donde *p* es la presión estática, $\overline{\tau}$ es el tensor de esfuerzos viscosos, \overline{g} es la aceleración de la gravedad y \overline{F} alguna fuerza externa adicional por unidad de volumen.

Teniendo en cuenta que

$$\rho \vec{g} = -\rho \nabla(gz)$$

Para fluidos incompresibles. Los términos correspondientes a la resultante de las fuerzas debidas a la presión $(-\nabla p)$ y de las fuerzas másicas $(\rho \vec{g})$ se pueden agrupar y se escribe $-\nabla(p + \rho g z)$.

Para geometrías 2D axisimétricas, las componentes axial y radial de la ecuación del momento son:

Componente x

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{1}{r}\frac{\partial}{\partial x}(r\rho V_x V_x) + \frac{1}{r}\frac{\partial}{\partial r}(r\rho V_r V_x)$$

$$= -\frac{\partial p}{\partial x} + \frac{1}{r}\frac{\partial}{\partial x}\left[r\mu\left(2\frac{\partial V_x}{\partial x} - \frac{2}{3}\left(\nabla \cdot \vec{V}\right)\right)\right] + \frac{1}{r}\frac{\partial}{\partial r}\left[r\mu\left(\frac{\partial V_x}{\partial r} + \frac{\partial V_r}{\partial x}\right)\right] + F_x$$
Ec. 3.4

Componente r

$$\frac{\partial}{\partial t}(\rho V_r) + \frac{1}{r}\frac{\partial}{\partial x}(r\rho V_x V_r) + \frac{1}{r}\frac{\partial}{\partial r}(r\rho V_r V_r)$$

$$= -\frac{\partial p}{\partial r} + \frac{1}{r}\frac{\partial}{\partial x}\left[r\mu\left(\frac{\partial V_r}{\partial x} - \frac{\partial V_x}{\partial r}\right)\right] + \frac{1}{r}\frac{\partial}{\partial r}\left[r\mu\left(2\frac{\partial V_r}{\partial r} - \frac{2}{3}(\nabla \cdot \vec{V})\right)\right]$$
Ec. 3.5
$$-2\mu\frac{V_r}{r^2} + \frac{2}{3}\frac{\mu}{r}(\nabla \cdot \vec{V}) + \rho\frac{V_z^2}{r} + F_r$$

donde

$$\nabla \cdot \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_r}{\partial r} + \frac{V_r}{r}$$

Recordemos que $\vec{V} = V_x(r)\hat{e}_x$

3.2.3 Ecuación de conservación de la energía

La conservación de la energía es descrita a partir de:

$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot \left(\vec{V}(\rho E + p)\right) = \nabla \cdot \left[k_{eff}\nabla T - \sum_{j}h_{j}\vec{J}_{j} + \left(\vec{\tau}_{eff}\cdot\vec{V}\right)\right]$$
 Ec. 3.6

Donde \vec{J}_j es el flujo de difusión de la especie j y k_{eff} es la conductividad térmica local efectiva que es la suma de la conductividad térmica de cada fluido más la conductividad térmica que se define en cada modelo de turbulencia $(k + k_t)$. En nuestro caso de flujo laminar, el valor de la conductividad térmica k_t resulta cero por lo que $k_{eff} = k$.

Los primeros tres términos a la mano derecha de la ecuación 3.6, representan la transferencia de energía debido a la conducción, difusión de las especies y disipación por viscosidad, respectivamente.

3.2.4 Ecuación para el transporte de especies

Para predecir la fracción másica local para cada una de las especies en estudio, hay que resolver también las ecuaciones de conservación de especies químicas:

$$\frac{\partial}{\partial t} \left(\rho Y_i \right) + \nabla \cdot \left(\rho \vec{V} Y_i \right) = -\nabla \cdot \vec{J}_i, \qquad \text{Ec. 3.7}$$

donde Y_i es la fracción másica de la especie *i*.

3.2.4.1 Difusión de masa en flujos laminares

En la ecuación 3.7, \vec{J}_i es el flujo por difusión de la especie *i*, que surge debido a los gradientes de temperatura y concentraciones. Fluent usa por defecto la conocida Ley de Fick, para modelar la difusión de masa debido a los gradientes de concentración, la difusión está dada por:

$$\vec{J}_i = -\rho D_{i,m} \nabla Y_i - D_{T,i} \frac{\nabla T}{T}$$
 Ec. 3.8

Donde $D_{i,m}$ es el coeficiente de difusión de masa para la especie *i* en la mezcla, y $D_{T,i}$ es el coeficiente de difusión térmica. En el presente estudio se ha considerado que la temperatura del fluido en el ducto se mantiene uniforme por lo que $\nabla T = 0$ y no hay difusión por gradiente de temperatura.

3.3 Condiciones de frontera

Aprovechando la simetría axial del volumen de control, se ha definido, como región de análisis en Fluent, un volumen de control bidimensional de forma rectangular como se esquematiza en la figura 3.3. La frontera del volumen de control está constituida por cinco zonas numeradas del 1 al 5.

Fig. 3.3 Volumen de control móvil y condiciones de frontera: "Zona 1" Velocidad de entrada, "Zona 2" Cara del disco del raspatubo, "Zona 3" Pared del ducto, "Zona 4" axisimetría respecto al eje de la tubería, "Zona 5" Presión de salida.

Fuente: Elaboración propia

3.3.1 Cálculo del caudal que atraviesa la región anular

Para el volumen de control mostrado en la figura 3.4 se observan dos caudales de ingreso que son Q_l caudal que ingresa por la luz equivalente de separación y Q_p que es el caudal que desplaza el raspatubo. A la salida del volumen de control citado se encuentra el caudal Q que recorre por el ducto. Considerando que el flujo es estacionario, que no hay flujo a través de las líneas de frontera de corriente y que el flujo es incompresible, se aplica la ecuación de la continuidad a dicho volumen de control:

$$Q_l + Q_p = Q \qquad \text{Ec. 3.9}$$

Fuente: Elaboración propia

Uno de nuestros primeros objetivos es calcular el caudal de ingreso Q_l , según la ecuación 3.9 se cumple que:

$$Q_l = VA - V_p A_p , \qquad \text{Ec. 3.10}$$

donde *A* es el área de la sección interna del ducto de diámetro 0.58166 metros, *V* es la velocidad del fluido, dicha velocidad se determinan usando el caudal de bombeo en el ducto fijado en 20000 barriles/día o $0.0368 \text{ m}^3/\text{s}$.

$$V = \frac{Q}{\pi \times r^2} = \frac{0.0368m^3/s}{\frac{\pi}{4} \times 0.58166^2m^2} = 0.1385m/s$$

Dada la luz equivalente de separación de 1mm se puede determinar el diámetro idealizado D_d que ocupan los discos cuando están dentro del ducto:

$$D_d = D - 2h Ec. 3.11$$

La ecuación 3.11 nos permite determinar A_p , que es el área ideal que ocupa el raspatubo en el ducto.

$$A_p = \frac{\pi}{4} \times D_d^2 = \frac{\pi}{4} \times (D - 2h)^2 = \frac{\pi}{4} \times (0.58166 - 2 \times 0.001)^2 = 0.2639m^2$$

Fijado el caudal de salida Q y el área ideal del raspatubo A_p , la única variable que nos falta para calcular el caudal Q_l es V_p , la cual depende del tipo de crudo que este cruzando el raspatubo.

3.3.2 Zona 1

Como condición de frontera en la zona 1, se ha considerado un perfil de velocidades parabólico. Se justifica a continuación la forma de dicho perfil.

Se ha encontrado que cuando el raspatubo se desplaza por un ducto, la velocidad media del fluido es mayor que la del raspatubo en una cantidad igual a V_d cuyo valor se determina a partir de la ecuación 2.3 mostrada en el capítulo 2. Esto implica que hay un flujo de fluido que cruza la región anular entre la parte exterior del disco del raspatubo y la superficie interior del ducto, zona 1 en la figura 3.3, además el caudal de este flujo es conocido.

Debido al pequeño valor de la luz equivalente de separación, respecto al diámetro del disco del raspatubo o del diámetro del ducto, se ha considerado al flujo en la región anular entre raspatubo y ducto como un flujo entre dos placas planas paralelas e infinitas en la que una está fija (placa correspondiente al ducto) y la otra se desplaza con una velocidad V_p (placa correspondiente al raspatubo), ver figura 3.5.

Fig. 3.5 Análisis de flujo entre placas paralelas infinitas: placa inferior en movimiento con velocidad constante, V_p

Fuente: Elaboración propia.

3.3.2.1 Flujo laminar en región anular

Para determinar si se tiene un flujo laminar o no en esta región, se debe cacular el número de Reynolds utilizando el diámetro hidráulico. El diámetro hidráulico está definido como:

$$D_h = \frac{4A}{P}, \qquad \qquad \text{Ec. 3.12}$$

donde A es el área de la sección transversal del conducto y P es el perímetro mojado.

El número de Reynolds utilizando el diámetro hidráulico es:

$$R_{D_h} = \frac{VD_h}{\upsilon}$$
 Ec. 3.13

En el modelo planteado el diámetro hidráulico es:

$$D_h = \frac{4 \times 0.001 \times \pi \times 0.58166}{2 \times 0.001 + 2 \times \pi \times 0.58166} = 1.9989 \times 10^{-3} m$$

Y los números de Reynolds para los crudos de 18 y 19.8 °API cuya viscosidades cinemáticas mostradas en la tabla 3.1 resultan:

Crudo de 18°API

$$R_{D_{h}} = \frac{2.2907 \times 1.9989 \times 10^{-3}}{5.2485 \times 10^{-4}} = 8.7240$$

Crudo de 19.8 °API

$$R_{D_{h}} = \frac{2.3035 \times 1.9989 \times 10^{-3}}{2.7279 \times 10^{-4}} = 16.8788$$

Los valores son mucho menores que 2300 por lo que se puede afirmar que el flujo a través de la región anular es laminar en ambos casos, para crudo de 18°API y de 19.8°API (ver White 4ta Ed, p357).

3.3.2.2 Perfil parabólico

En la figura 3.5 se indica la orientación del sistema de coordenadas utilizado para estudiar el flujo entre las placas paralelas. El flujo se lleva a cabo en la dirección x por lo que la única componente de la velocidad no nula es V_x , la cual no puede variar en la dirección x pero si en la dirección y, es decir, $V_x = V_x(y)$. La distribución de velocidad luego de resolver la ecuación de la cantidad de movimiento para un flujo laminar unidimensional entre las placas paralelas, es (Fox 1995, p364):

$$u = \frac{1}{2\mu} \left(\frac{\partial p}{\partial X}\right) Y^2 + \frac{c_1}{\mu} Y + c_2$$
 Ec.3.14

Las constantes c_1 y c_2 son calculadas con la ayuda de las siguientes condiciones de frontera.

En y = 0, u = 0. Consecuentemente,

 $c_2 = 0$

En y = h, $u = V_p$. Consecuentemente,

$$c_1 = \frac{V_p \mu}{h} - \frac{1}{2} \left(\frac{\partial p}{\partial X}\right) h$$

El perfil de velocidades resultante es parabólico y está dado por la expresión:

$$u = \frac{V_p y}{h} + \frac{h^2}{2\mu} \left(\frac{\partial p}{\partial X}\right) \left[\left(\frac{Y}{h}\right)^2 - \left(\frac{Y}{h}\right) \right]$$
 Ec. 3.15

3.3.2.3 Perfil para un observador en el eje de la tubería

El perfil de velocidades presentado en la ecuación 3.15, se da como condición de frontera en la región 1. Sin embargo, para modelos con simetría axial Ansys Fluent, utiliza un sistema de coordenadas cuyo origen está ubicado en el eje de simetría por lo que se debe expresar el perfil de velocidades según dicho sistema coordenado.

Fig. 3.6 Sistemas de coordenadas *x*, *y* para un observador ubicado en el eje de la tubería. Sistema de coordenadas utilizado en Ansys Fluent (Figura no a escala)

Fuente: Elaboración propia.

Según la figura 3.6 Y = 0.29083 - y. Si se reemplaza esta expresión en la ecuación 3.15 se obtiene el perfil de velocidades en la zona 1 en función de los ejes coordenados *x*, *y*. (Hay que notar que $\Delta x = \Delta X$).

$$u = \frac{V_p \left(0.29083 - y\right)}{h} + \frac{h^2}{2\mu} \left(\frac{\partial p}{\partial x}\right) \left[\left(\frac{0.29083 - y}{h}\right)^2 - \left(\frac{0.29083 - y}{h}\right) \right]$$
 Ec. 3.16

3.3.2.4 Perfil de velocidades en sistema coordenado móvil

Puesto que el volumen de control considerado se mueve con velocidad V_p , el perfil de velocidades dado como condición de frontera debe ser un perfil de velocidades relativo al volumen de control móvil.

Para un observador que se desplaza con el raspatubo, la placa superior se mueve hacia la izquierda con velocidad constante V_p , mientras que la placa inferior esta quieta. El perfil de velocidades relativo a este observador vendrá dado por:

$$V_{rel} = \frac{V_p \left(0.29083 - y\right)}{h} + \frac{h^2}{2\mu} \left(\frac{\partial p}{\partial x}\right) \left[\left(\frac{0.29083 - y}{h}\right)^2 - \left(\frac{0.29083 - y}{h}\right) \right] - V_p \qquad \text{Ec. 3.17}$$

donde V_p es la velocidad del raspatubo, μ es la viscosidad dinámica del fluido que pasa hacia la región aguas abajo del raspatubo y $\partial p/\partial x$ es el gradiente de presión en la zona 1.

3.3.2.5 Caída de presión

Para calcular la caída de presión a lo largo de un disco del raspatubo, nos valemos de la expresión general de flujo volumétrico a través de una sección rectangular de altura h y ancho l:

$$Q = \int_0^h u l \, dY$$

Para el perfil parabólico, el caudal está dado por:

$$Q = \int_0^h \left[\frac{V_p Y}{h} + \frac{1}{2\mu} \left(\frac{\partial p}{\partial X} \right) (Y^2 - hY) \right] l \, dY \qquad \text{Ec. 3.18}$$

En el modelo planteado *l* es la longitud de la circunferencia con diámetro igual al diámetro interior del ducto. Por lo que el flujo volumétrico por unidad de ancho *l* está dado por:

$$\frac{Q}{l} = \frac{V_p h}{2} - \frac{1}{12\mu} \left(\frac{\partial p}{\partial X}\right) h^3$$
 Ec. 3.19

Puesto que $\Delta x = \Delta X$, también $\frac{\partial p}{\partial X} = \frac{\partial p}{\partial x}$, despejando el gradiente de presión y usando la variable *x* para el sistema de coordenadas en el eje de simetría se obtiene:

$$\left(\frac{\partial p}{\partial x}\right) = \frac{12\mu}{h^3} \left(\frac{V_p h}{2} - \frac{Q}{l}\right)$$
 Ec. 3.20

Son conocidos todos los términos en el lado derecho de esta ecuación por lo que se puede calcular el gradiente de presión. Entonces, la distribución de velocidades presentada en la ecuación 3.17 se usará como condición de frontera en la zona 1 del volumen de control mostrado en la figura 3.3.

3.3.3 Zonas 2 y 3

La zona 2 es una cara del disco del raspatubo y tiene una velocidad nula respecto al observador que se desplaza con el raspatubo.

La zona 3 coincide con la pared interna del ducto y su movimiento relativo es hacia la izquierda a una velocidad V_p :

$$V_p = V - V_d$$
 Ec. 3.21

donde $V_d = \sqrt{\frac{2\eta N}{C_D \rho A}}$ y V es la velocidad media del fluido en la tubería.

3.3.4 Zonas 4 y 5

La zona 4 es un eje de simetría de modo que las condiciones especificadas en las demás zonas se repiten en todos los planos que pasan por este eje.

La zona 5 es atravesada por el fluido y en esta región se conoce la presión.

3.4 Propiedades de la mezcla de fluidos

Para llevar a cabo la mezcla de las especies químicas, se le proporcionan al software ciertas propiedades que serán descritas en el próximo capítulo. Además, Ansys Fluent crea un *material de mezcla* que puede ser pensado como un conjunto de especies donde a partir de una lista se puede determinar las reglas que rigen su interacción y el cálculo de sus propiedades derivadas de las propiedades de las especies individuales. Las propiedades físicas del material de mezcla a definir se muestran a continuación.

Densidad

La densidad en el material de mezcla de fluidos se define a partir de:

$$\rho = \frac{1}{\sum_{i} \frac{Y_{i}}{\rho_{i}}} , \qquad \text{Ec. 3.22}$$

donde Y_i es la fracción de masa y ρ_i es la densidad de la especie *i*.

Capacidad calorífica

La capacidad calorífica específica de la mezcla se determina a partir de la siguiente relación:

$$c_p = \sum_i Y_i c_{p,i} \quad , \qquad \text{Ec. 3.23}$$

donde Y_i es la fracción de masa y $c_{p,i}$ es la capacidad calorífica de la especie *i*.

Viscosidad

La viscosidad de la mezcla se calcula en base a la siguiente relación.

$$\mu = \sum_{i} Y_{i} \mu_{i} \quad , \qquad \text{Ec. 3.24}$$

donde Y_i es la fracción de masa y μ_i es la viscosidad de la especie *i*.

Conductividad térmica

La conductividad térmica de la mezcla se calcula en base a la siguiente relación.

$$k = \sum_{i} Y_{i} k_{i} \quad , \qquad \text{Ec. 3.25}$$

donde Y_i es la fracción de masa y k_i es la conductividad térmica de la especie *i*.

Coeficiente de difusión másica

Como se explica en la sección 3.2.4.1 del presente capítulo, para calcular la difusión de especies químicas en flujos laminares usando la ley de Fick se usa el coeficiente de difusión másica $D_{i,m}$. En el caso de dos componentes el coeficiente de difusión de A en B es el mismo que el de difusión de B en A. Es decir, $D_{AB} = D_{BA}$. En las simulaciones se ha considerado el valor de 1x10⁻⁹ m²/s que es el valor máximo en el rango típico de valor este coeficiente (ver página 71 de Baehr).

Capítulo 4

Simulación numérica de la difusión de un fluido en otro

La velocidad con la que un raspatubo de dos discos se desplaza en un ducto se determina a partir del análisis del movimiento del raspatubo realizado en el capítulo 2 usando la velocidad media del crudo que se desplaza en la tubería, la cual se obtiene del caudal de bombeo. A partir de estas dos velocidades se logra determinar el caudal que atraviesa la región anular determinada por la luz equivalente de separación entre disco y ducto para seguidamente establecer la cantidad de crudo que ha pasado al frente de mezcla aguas abajo del raspatubo después de haber transcurrido cierto intervalo de tiempo.

Si bien estimar la cantidad de crudo que pasa entre disco y ducto es importante, desde el punto de vista de la contaminación del crudo, es necesario determinar la longitud de la región contaminada y esto es el objeto de este estudio. Se quiere conocer la distribución espacial de la concentración del crudo que atraviesa al raspatubo teniendo en cuenta la difusión después de que ha transcurrido el intervalo de tiempo que demora un raspatubo en atravesar una imperfección en un ducto. De esta manera se podrá estimar la longitud del frente de mezcla aguas abajo del raspatubo.

4.1 Geometría

Como se explicó en el capítulo 3 sección 3.3, aprovechando la simetría axial del volumen de control, se ha definido como región de análisis en Ansys Fluent, una nueva región plana de forma rectangular. Un esquema de esta geometría se muestra en la figura 4.1 junto con la tabla 4.1 donde se especifican sus dimensiones.

Fuente: Elaboración propia.

1 abia 4.1 Datos de la geometría mostrada en la rigura 4.1 (C	Tabla 4.1 Datos de	la geometría mostrada en	la figura 4.1 (d	:)
--	--------------------	--------------------------	------------------	----

	Parámatra	Medida
	Falametro	(mm)
R_i	Radio interno del ducto de 24 pulgadas	290.83
L	Longitud del ducto a simular	2000.00
h	Luz equivalente de separación	1

Fuente: Elaboración propia.

4.2 Propiedades de los fluidos

Como se mencionó en el capítulo 1, cada petróleo crudo extraído de un reservorio presenta distintas propiedades las cuales son determinadas a partir de ensayos en laboratorio. Estos ensayos permiten emitir un documento donde se incluye la caracterización total de un crudo, tanto física como química. Las características observadas en un ensayo de crudo muestran por ejemplo: la densidad en grados API, la presencia de azufre, viscosidad, punto de congelación, presión de vapor, contenido de sulfuro de hidrógeno, sales, agua, sedimentos, acidez, y presencia de metales (Lopez y Barroso, 2013).

4.2.1 Propiedades utilizadas en este trabajo

En el desarrollo de este trabajo se han presentado distintas ecuaciones en donde es necesario especificar algunas propiedades de los crudos a usar. La densidad y la viscosidad de los crudos son datos necesarios en el cálculo de la velocidad del raspatubo y también se deben especificar en el software Ansys Fluent puesto que aparecen en las ecuaciones que modelan el flujo. El software citado resuelve, además de la ecuación de la conservación de la masa y la ecuación de la cantidad de movimiento, la ecuación de la energía y las ecuaciones del transporte de especies. En el caso de la ecuación de la energía, es necesario especificar el calor específico a presión constante para el cálculo de entalpías y la conductividad térmica para la transferencia de energía debido a la conducción, mientras que para las ecuaciones del transporte de especies se necesita el peso molecular de cada uno de los componentes.

Las propiedades de calor específico a presión constante, conductividad térmica y peso molecular no se especifican en las tablas de propiedades totales de los crudos. Para estimar dichas propiedades se siguen procedimientos estándares en los laboratorios que las determinan de forma experimental: norma ASTM D2766 – 95 Método de ensayo normalizado para el cálculo del calor específico en líquidos y sólidos, norma ASTM D2717 – 95 Método de ensayo normalizado para el cálculo de ensayo normalizado para la estimación del peso molecular de petróleo crudo a partir de medidas de viscosidad. Sin embargo, debido a la dificultad para desarrollar los ensayos en laboratorio, en el presente trabajo se utilizó el simulador comercial de procesos químicos ChemCAD que es capaz de manejar petróleo crudo.

4.2.2 Estimación de propiedades a partir del ChemCAD

ChemCAD es un software de simulación de procesos ampliamente usado. Posee una base de datos de propiedades físicas de aproximadamente 2150 compuestos. Entre otras funciones permite estimar propiedades de componentes a partir de las curvas TBP.

Se utilizó este software para crear compuestos muy parecidos a los crudos utilizados en este estudio, con un conjunto de propiedades dentro de las cuales se encuentran las tres propiedades faltantes arriba mencionadas. La manera en que el software realiza este procedimiento es solicitándole al usuario el ingreso de las propiedades principales del crudo (densidad y viscosidades a distintas temperaturas) y el ingreso de una curva de destilación TBP que le sirve para establecer fracciones según las temperaturas de corte. En estas fracciones el software añade pseudo-componentes hipotéticos cuyas propiedades dan forma a la curva TBP. Se obtiene de esta manera un nuevo crudo con características muy similares al nuestro.

4.2.2.1 Datos de entrada

Se necesitan el calor especifico, la conductividad térmica y el peso molecular de dos tipos de crudo: crudo del Lote 1AB y crudo del Lote 67. Para obtener estas propiedades se suministran al software los datos indicados en la tabla 4.2 así como los valores que determinan la curva TBP que se muestran en la tabla 4.3. Las curvas TBP correspondientes a los datos de la tabla 4.3 se muestran en la figura 4.2.

	Crudo del Lote 1AB	Crudo del Lote 67
Gravedad API	18	19.8
Viscosidad cinemática	245.9 @104°F (40°C)	81.65 @122°F (50°C)
cSt	17.76 @210°F (100°C)	310.8 @77°F (25°C)

Tabla 4.2. Propiedades necesarias para la simulación en ChemCAD.(Fuente: Crude Assay Lote 1AB, Lote 67)

Fuente:	Crude	Assav	Lote 6	7 v Lote	1AB.	PETRC	PERU
		1 10000	20.00			1 2 1 1 0	

Tabla 4.3Tablas para generar las curvas TBP en cada crudo. Se especifica elporcentaje acumulado de volumen destilado en base a cada corte de temperatura.

Crudo	Lote 1AB	Crudo Lote 67		
T(°C)	%Volumen	T(°C)	%Volumen	
148.89	10.03	71.11	6.45	
196.11	12.61	100.00	10.03	
273.89	23.40	165.56	18.22	
315.56	29.07	182.22	20.5	
357.22	35.92	220.00	24.46	
507.78	66.34	326.67	33.93	
-	-	343.33	35.74	
-	-	454.44	48.91	
-	-	523.89	57.13	

Fuente: Crude Assay Lote 67 y Lote 1AB, PETROPERU

Fig. 4.2 Curvas TBP (True Boiling Point) de crudos Lote 1AB y Lote 67.

Fuente: Crude Assay Lote 67 y Lote 1AB, PETROPERU.

4.2.2.2 Propiedades de salida

En ChemCAD se especifican dos líneas de procesos, una para cada crudo. En la figura 4.3 se muestra el esquema utilizado en el software.

Fig 4.3. Procesos para determinar las propiedades de los crudos en ChemCAD.

Fuente: Captura de pantalla de proceso en ChemCAD.

Las propiedades necesarias para el estudio de dinámica de fluidos computacional se muestran en la tabla 4.4. De éstas, el peso molecular, el calor específico y la conductividad térmica han sido determinados con el software ChemCAD.

 Tabla 4.4 Propiedades resultantes del análisis en ChemCAD, a ser usadas en Ansys

 Fluent.

Propiedad	Lote 1AB	Lote 67
Temperatura (°C)	2	27
Gravedad API	18	19.8
Peso molecular promedio (kg/kmol)	266.7034	273.0321
Densidad (kg/m ³)	937.0231	925.9802
Calor especifico Cp (J/kg-K)	1709.3794	1771.2678
Viscosidad dinámica μ (Pa-s)	0.4918	0.2526
Viscosidad cinemática (m ² /s)	0.00052485	0.00027279
Conductividad térmica (W/m-K)	0.1273	0.1274

Fuente: Elaboración propia.

4.3 Escenarios de simulación

Conocidas las propiedades de los crudos separados por el raspatubo, se han simulado dos escenarios posibles de programación de bombeo. En el primer escenario se considera que el crudo del Lote 67 se encuentra aguas arriba del raspatubo mientras que el crudo del Lote 1AB se encuentra aguas abajo, ver figura 4.3 (a). En este escenario es el crudo del Lote 67 el que ingresa al volumen de control por lo que sus propiedades son usadas para determinar el perfil de velocidades a especificar como condición de frontera en la zona 1. En el segundo escenario se considera que el crudo del Lote 67 se encuentra aguas arriba del raspatubo mientras que el crudo del Lote 67 se encuentra aguas arriba del raspatubo mientras que el crudo del Lote 67 se encuentra aguas abajo, ver figura 4.4 (b). En este escenario es el crudo del Lote 1AB el que ingresa al volumen de control por lo que sus propiedades son usadas para determinar el perfil de velocidades son usadas para determinar aguas abajo del raspatubo, ver figura 4.4 (b). En este escenario es el crudo del Lote 1AB el que ingresa al volumen de control por lo que sus propiedades son usadas para determinar el perfil de velocidades a especificar como condición de frontera en la zona 1.

Fig. 4.4. Escenarios de programación de bombeo estudiados: (a) 1er escenario (b) 2do escenario

Fuente: Elaboración propia.

4.4 Condiciones de contorno en primer escenario de simulación

Se presentan a continuación los valores para las condiciones de contorno según las zonas de la figura 4.5.

Fig. 4.5 Volumen de control móvil y condiciones de frontera: "Zona 1" Velocidad de entrada, "Zona 2" Cara del disco del raspatubo, "Zona 3" Pared del ducto, "Zona 4" axisimetría respecto al eje de la tubería, "Zona 5" Presión de salida.

Fuente: Elaboración propia

4.4.1 Zona 1

Para el primer escenario de simulación se ha considerado que por la luz equivalente de separación entre los discos y el ducto, está ingresando un caudal Q_l de crudo del Lote 67 de 19.8 °API cuyo valor se calcula a continuación.

4.4.1.1 Caudal en luz equivalente Q_l

La única incógnita en la ecuación 3.10 ($Q_l = VA - V_pA_p$) es la velocidad del raspatubo V_p , la cual se puede calcular a partir de la ecuación 2.5 que se presentó en el capítulo 2:

$$V_p = V - \sqrt{\frac{2\eta N}{C_D \rho A}}$$
 Ec. 2.5

N es la suma escalar de todas las fuerzas normales que los discos del raspatubo ejercen sobre la tubería en la dirección radial, y para un raspatubo de 2 discos resultó 3845.6 N (ver capítulo 2, sección 2.2.3), η es el coeficiente de fricción que en la simulación se consideró igual a 0.6 (Liu 2003, p314). En este primer escenario, la densidad ρ del crudo

que ingresa al volumen de control corresponde a la del crudo del Lote 67 y es igual a 925.9802 kg/m³. "*A*" corresponde al área de la sección interna del ducto. El coeficiente de arrastre C_d se calcula a partir de la ecuación 2.6.

$$C_D = \frac{4k_d^4}{\left(1 - k_d^2\right)^2}$$
 Ec. 2.6

donde k_d resulta es igual a:

$$k_d = \frac{D_d}{D} = \frac{D - 2h}{D} = 1 - \frac{2h}{D} = 1 - \frac{2 \times 0.001}{0.58166} = 0.99656$$

Reemplazando el valor de k_d en la ecuación 2.6, el coeficiente de arrastre resulta C_D = 83635.793.

Por lo que de la ecuación 2.5 se determina la velocidad del raspatubo que resulta:

$$V_p = V - \sqrt{\frac{2\eta N}{C_D \rho A}} = 0.1385 - \sqrt{\frac{2 \times 0.6 \times 3845.6}{83635.793 \times 925.9802 \times \frac{\pi}{4} \times 0.58166^2}} = 0.1235 \, m/s$$

Llegado a este punto ya se puede determinar el caudal de ingreso Q_l , de la ecuación 3.10:

$$Q_l = VA - V_p A_p = Q - V_p A_p = 0.0368 - 0.1235 \times 0.2639$$

 $Q_l = 0.00420197m^3 / s$

4.4.1.2 Perfil de ingreso en luz equivalente

En el capítulo 3 se dedujo que para un observador que se desplaza con el raspatubo, la placa superior se mueve hacia la izquierda con velocidad constante V_p , mientras que la placa inferior esta quieta. El perfil de velocidades relativo a este observador vendrá dado por:

$$V_{rel} = \frac{V_p \left(0.29083 - y\right)}{h} + \frac{h^2}{2\mu} \left(\frac{\partial p}{\partial x}\right) \left[\left(\frac{0.29083 - y}{h}\right)^2 - \left(\frac{0.29083 - y}{h}\right) \right] - V_p \qquad \text{Ec. 3.17}$$

En la ecuación descrita arriba, la única variable desconocida es el gradiente de presión y se calcula a partir de la ecuación 3.20

$$\left(\frac{\partial p}{\partial x}\right) = \frac{12\mu_{19.8}}{h^3} \left(\frac{V_p h}{2} - \frac{Q_l}{l}\right),$$
 Ec. 3.20

donde $\mu_{19.8}$ es la viscosidad dinámica del crudo de 19.8°API del Lote 67 mostrado en la tabla 4.4 y $l = \pi D$. Reemplazando los valores calculados anteriormente, el gradiente de presión resulta:

$$\left(\frac{\partial p}{\partial x}\right) = \frac{12 \times 0.2526}{0.001^3} \left(\frac{0.1235 \times 0.001}{2} - \frac{0.00420197}{\pi \times 0.58166}\right) = -6783075.213 Pa/m$$

Este gradiente de presión es el que existe en la región de espesor h, entre el disco del raspatubo y la superficie interior del ducto, y provoca una caída de presión.

$$\partial p = -6783075.213 \times 0.3 = -2034922.564 Pa$$

Reemplazando el gradiente de presión resultante en la ecuación 3.17, se obtiene el perfil de velocidades relativas a la zona 1:

$$V_{rel} = 123.5 \times (0.29083 - y) - 13.4265 \times \left[\left(\frac{0.29083 - y}{0.001} \right)^2 - \left(\frac{0.29083 - y}{0.001} \right) \right] - 0.1235$$

En la figura 4.6 se observa el perfil de ingreso del crudo correspondiente a la región aguas abajo del raspatubo.

Fig. 4.6 Perfil de ingreso

Fuente: Elaboración propia.

La ecuación para la velocidad relativa resulta ser de la forma $V_{rel}=A+By+Cy^2$, luego de operar y ordenar, los términos A, B y C resultantes son

A = -1131697.371B = 7796084.435C = -13426459.469

Se puede escribir entonces:

$$V_{rel} = -1131697.371 + 7796084.435y - 13426459.469y^2$$
 Ec. 4.2

Esta es la forma en la que se ha especificado el perfil de velocidades de la zona 1 al Fluent, utilizando una UDF¹. La función ingresada es:

F PROFILE(f,thread,index)=-1131697.371+7796084.435*y-13426459.469*y*y

4.4.2 Zona 2 y 3

La zona 2 es una cara del disco del raspatubo y tiene una velocidad nula respecto al observador que se desplaza con el raspatubo.

La zona 3 coincide con la pared interna del ducto y su movimiento relativo es hacia la izquierda a una velocidad V_p .

$$V_{zona3} = -V_p = -0.1235 m/s$$

4.4.3 Zona 4 y 5

La zona 4 es un eje de simetría de modo que las condiciones específicas en las demás zonas se repiten en todos los planos que pasan por este eje.

La zona 5 es atravesada por el fluido y en esta región se conoce la presión.

4.5 Condiciones de contorno en segundo escenario de simulación

Se presentan a continuación los valores para las condiciones de contorno de la figura 4.5.

4.5.1 Zona 1

Para el segundo escenario de simulación se ha considerado que por la luz equivalente de separación entre los discos y el ducto, está ingresando un caudal Q_l de crudo del Lote 1AB de 18 °API cuyo valor se calcula a continuación.

4.5.1.1 Caudal en luz equivalente Q_l

La única incógnita en la ecuación 3.10 ($Q_l = VA - V_pA_p$) es la velocidad del raspatubo V_p , la cual se puede calcular a partir de la ecuación 2.5 que se presentó en el capítulo 2:

$$V_p = V - \sqrt{\frac{2\eta N}{C_D \rho A}}$$
 Ec. 2.5

N es la suma escalar de todas las fuerzas normales que los discos del raspatubo ejercen sobre la tubería en la dirección radial, y para un raspatubo de 2 discos resultó 3845.6 N (ver capítulo 2, sección 2.2.3), η es el coeficiente de fricción que en la simulación se consideró igual a 0.6 (Liu 2003, p314). En este segundo escenario, la densidad ρ del crudo que ingresa al volumen de control corresponde a la del crudo del Lote 1AB y es igual a 937.0231 kg/m³. "*A*" corresponde al área de la sección interna del ducto. El coeficiente de arrastre *C*_D se calcula a partir de la ecuación 2.6 mostrada también en el capítulo 2.

¹ Un UDF es una función, programada por el usuario, escrita en lenguaje C que puede ser vinculada dinámicamente con el solucionador FLUENT.

$$C_D = \frac{4k_d^4}{\left(1 - k_d^2\right)^2}$$
 Ec. 2.6

donde k_d resulta es igual a:

$$k_{d} = \frac{D_{d}}{D} = \frac{D - 2h}{D} = 1 - \frac{2h}{D} = 1 - \frac{2 \times 0.001}{0.58166} = 0.99656$$

Reemplazando el valor de k_d en la ecuación 2.6, el coeficiente de arrastre resulta $C_D = 83635.793$.

Por lo que de la ecuación 2.5, la velocidad del raspatubo resulta:

$$V_p = V - \sqrt{\frac{2\eta N}{C_D \rho A}} = 0.1385 - \sqrt{\frac{2 \times 0.6 \times 3845.6}{83635.793 \times 937.0231 \times \frac{\pi}{4} \times 0.58166^2}} = 0.1236 \ m/s$$

Llegado a este punto ya se puede determinar el caudal de ingreso Q_l , de la ecuación 3.10:

$$Q_{l} = VA - V_{p}A_{p} = Q - V_{p}A_{p} = 0.0368 - 0.1235 \times 0.2639 = 0.0041786m^{3} / s$$
$$Q_{l} = 0.0041786m^{3} / s$$

4.5.1.2 Perfil de ingreso en luz equivalente

En el capítulo 3 se dedujo que para un observador que se desplaza con el raspatubo, la placa superior se mueve hacia la izquierda con velocidad constante V_p , mientras que la placa inferior esta quieta. El perfil de velocidades relativo a este observador vendrá dado por:

$$V_{rel} = \frac{V_p \left(0.29083 - y\right)}{h} + \frac{h^2}{2\mu} \left(\frac{\partial p}{\partial x}\right) \left[\left(\frac{0.29083 - y}{h}\right)^2 - \left(\frac{0.29083 - y}{h}\right) \right] - V_p \qquad \text{Ec. 3.17}$$

En la ecuación descrita arriba, la única variable desconocida es el gradiente de presión y se calcula a partir de la ecuación 3.20

$$\left(\frac{\partial p}{\partial x}\right) = \frac{12\mu_{18}}{h^3} \left(\frac{V_p h}{2} - \frac{Q_l}{l}\right), \qquad \text{Ec. 3.20}$$

donde μ_{l8} es la viscosidad dinámica del crudo de 18°API del Lote 1AB mostrado en la tabla 4.4 y $l = \pi D$. Reemplazando los valores calculados anteriormente, el gradiente de presión resulta:

$$\left(\frac{\partial p}{\partial x}\right) = \frac{12 \times 0.4918}{0.001^3} \left(\frac{0.12360816 \times 0.001}{2} - \frac{0.00417863}{\pi \times 0.58166}\right) = -13130621.46 Pa/m$$

Este gradiente de presión es el que existe en la región de espesor h, entre el disco del raspatubo y la superficie interior del ducto, y provoca una caída de presión.

$$\partial p = -13130621 \times 0.3 = -393918644 Pa$$

Reemplazando el gradiente de presión resultante en la ecuación 3.17, se obtiene el perfil de velocidades relativas a la zona 1:

$$V_{rel} = 123.6 \times (0.29083 - y) - 13.34955 \times \left[\left(\frac{0.29083 - y}{0.001} \right)^2 - \left(\frac{0.29083 - y}{0.001} \right) \right] - 0.12360816$$

En la figura 4.7 se observa el perfil de ingreso del crudo correspondiente a la región aguas abajo del raspatubo.

Fig. 4.7 Perfil de ingreso

Fuente: Elaboración propia.

La ecuación para la velocidad relativa resulta ser de la forma $V_{rel}=A+By+Cy^2$, luego de operar y ordenar, los términos A, B y C resultantes son

A = -1125215.0459B = 7751429.51172C = -13349555.8845

Se puede escribir entonces:

$$V_{rel} = -1125215.0459 + 7751429.5117y - 13349555.8845y^2$$
 Ec. 4.4

Esta es la forma en la que se ha especificado el perfil de velocidades en la zona 1 al Fluent, utilizando una UDF, la función ingresada es:

F_PROFILE(f,thread,index)=-1125215.0459+7751429.5117*y-13349555.8845*y*y

4.5.2 Zona 2 y 3

La zona 2 es una cara del disco del raspatubo y tiene una velocidad nula respecto al observador que se desplaza con el raspatubo.

La zona 3 coincide con la pared interna del ducto y su movimiento relativo es hacia la izquierda a una velocidad V_p .

$$V_{zona3} = -V_p = -0.1236m/s$$

4.5.3 Zona 4 y 5

La zona 4 es un eje de simetría de modo que las condiciones específicas en las demás zonas se repiten en todos los planos que pasan por este eje.

La zona 5 es atravesada por el fluido y en esta región se conoce la presión.

4.6 Estudio de independencia de malla

El estudio de independencia de malla se realizó con el fin de encontrar tamaños límite de las celdas que conforman la malla tal que las predicciones del modelo fueran independientes de cualquier disminución de las dimensiones. El estudio consistió en comparar las predicciones del modelo computacional para diferentes mallas con celdas cada vez más pequeñas (mayor número de celdas) hasta encontrar el tamaño límite.

El estudio de independencia de malla se ha realizado con las condiciones de contorno correspondientes al segundo escenario de simulación donde se ha seleccionado la concentración másica del crudo de 18°API en crudo de 19.8°API como la variable dependiente y además la presión aguas abajo del raspatubo se ha fijó en 5000kPa. Se utilizaron mallas de un determinado número de elementos que se especifican a continuación: $75 \times 350, 150 \times 700 y 300 \times 1400$ elementos.

La figura 4.8 muestra la comparación de los perfiles de concentración del crudo de 18° API en crudo de 19.8° API calculados a lo largo de un cilindro imaginario de radio 0.1 metros concéntrico con el ducto. Se observa que la distribución de concentraciones a lo largo de la superficie cilíndrica seleccionada, es muy parecida para las mallas de $150 \times 700 y 300 \times 1400$ elementos por lo que se seleccionó la malla de 150×700 elementos, mostrada en la figura 4.9, para realizar las simulaciones.

Fig. 4.8 Fracción másica de crudo de 18°API calculados a lo largo del eje de la tubería

Fuente: Elaboración propia.

Es importante hacer notar que el tiempo requerido para realizar los cálculos con esta malla es de 6.5 horas, mientras que el correspondiente a la malla de 300×1400 es de aproximadamente 11 horas. El equipo de cómputo usado en estos cálculos tiene las siguientes características: Procesador Intel Core i7 Q740 @ 1.73 GHz y memoria RAM de 4 GB.

Fuente: Elaboración propia.

La forma en que el crudo de 18°API se va difundiendo en la región aguas abajo del raspatubo (color azul, crudo de 19.8°API) se muestra en la figura 4.10.

Fig. 4.10 Evolución en el tiempo de la distribución espacial de la fracción de masa de crudo de 18°API en crudo de 19.8 °API. Frente de mezcla aguas abajo del raspatubo para una malla de 150×700 y para una malla de 300×1400.

Fuente: Elaboración propia.

4.7 Evaluación de resultados variando presiones

Para las condiciones de contorno obtenidas en las secciones 4.4 y 4.5 del presente capítulo y para un tiempo de 9.5 segundos que le toma al raspatubo pasar sobre una determinada imperfección en el ducto, se determina el volumen de ingreso aguas abajo del raspatubo para ambos escenarios de simulación, ver tabla 4.5.

Tabla 4.5	Volumen de ingreso p	oara ambos es	scenarios de s	simulación er	9.5 segundos
-----------	----------------------	---------------	----------------	---------------	--------------

Escenario de simulación	Caudal de ingreso Q_l	Volumen de ingreso en 9.5s
Primero	0.00420197 m ³ /s 0.02643 bps	0.03991871 m ³ 0.2511 barriles
Segundo	0.00417863 m ³ /s 0.02628 bps	0.03969699 m ³ 0.2497 barriles

Fuente: Elaboración propia

Las gráficas que se muestran a continuación muestran la distribución de la concentración másica de las partículas fluidas que se encuentran en el eje de la tubería después que han transcurrido los 9.5 segundos. Las gráficas corresponden a diferentes presiones en la zona 5 del dominio de cálculo.

4.7.1 Resultados a 0 kPa para primer y segundo escenario

Para una presión de 0kPa aguas abajo del raspatubo hay una longitud de mezcla de 1.5 metros para el escenario de 18 - 19.8°API, mientras que para el escenario de 19.8 - 18°API hay una longitud de mezcla de 1.35 metros, ver figura 4.11.

Fuente: Elaboración propia

4.7.2 Resultados a 5000kPa para primer y segundo escenario

Para una presión de 5000kPa aguas abajo del raspatubo hay una longitud de mezcla de 1.55 metros para el escenario de 18 – 19.8°API, mientras que para el escenario de 19.8 – 18°API hay una longitud de mezcla de 1.35 metros, ver figura 4.12.

Fuente: Elaboración propia

4.7.3 Resultados a 8000kPa para primer y segundo escenario

Para una presión de 8000kPa aguas abajo del raspatubo hay una longitud de mezcla de 1.4 metros para el escenario de $18 - 19.8^{\circ}$ API, mientras que para el escenario de $19.8 - 18^{\circ}$ API hay una longitud de mezcla de 1.1 metros, ver figura 4.13.
Fig. 4.13Fracción másica a lo largo del eje de la tubería para ambos escenarios de
simulación a 8000 kPa

Fuente: Elaboración propia

4.7.4 Resultados a 13000kPa para primer y segundo escenario

Para una presión de 13000kPa aguas abajo del raspatubo hay una longitud de mezcla de 1 metro para el escenario de $18 - 19.8^{\circ}$ API, mientras que para el escenario de $19.8 - 18^{\circ}$ API hay una longitud de mezcla de 0.7 metros, ver figura 4.14.

Fig. 4.14 Longitud de mezcla para ambos escenarios de simulación a 13000 kPa

Fuente: Elaboración propia

4.7.5 Resultados con diferentes presiones en zona 5 para primer escenario de simulación.

Para el primer escenario de simulación (19.8 en 18°API) las concentraciones másicas en el eje axial de la tubería para distintas presiones en zona 5, se muestran en la figura 4.15.

Fig. 4.15 Fracción másica a lo largo del eje de la tubería en el primer escenario de simulación

Fuente: Elaboración propia

4.7.6 Resultados con diferentes presiones en zona 5 para segundo escenario de simulación.

Para el segundo escenario de simulación (18° en 19.8°API) las concentraciones másicas en el eje axial de la tubería para distintas presiones se muestran en la figura 4.16.

Fig. 4.16 Fracción másica a lo largo del eje de la tubería en el segundo escenario de simulación

Fuente: Elaboración propia

Conclusiones y Bibliografía

- En el transporte segregado de crudo usando raspatubos, se crean frentes de mezcla aguas arriba y aguas abajo del raspatubo. El paso del raspatubo a través de una irregularidad en la superficie interior del ducto ocasiona un flujo de crudo hacia ambos lados de éste. El modelo empleado para estudiar el flujo a través del raspatubo utiliza el concepto de luz equivalente de separación y predice dichos flujos. En la mayor parte del perfil de velocidades, que resulta entre pared externa del disco y superficie interior del ducto, el fluido tiene una velocidad mayor que la del raspatubo ocasionando flujo de la zona aguas arriba a la zona aguas abajo del raspatubo. Sin embargo, tal perfil de velocidades presenta también una pequeña región en la que la velocidad del fluido es menor que la del raspatubo lo que ocasionará el paso de fluido más el aporte de una película lubricante entre pared externa del disco y pared interna del ducto generan el frente de mezcla aguas arriba del raspatubo.
 - Si bien es cierto que para el primer escenario de simulación $(19.8 18^{\circ}API)$, el caudal de ingreso a través de la luz equivalente de separación es mayor que el caudal de ingreso en el segundo escenario $(18 19.8 {\circ}API)$, el análisis de las longitudes de mezcla presentadas en las gráficas 4.11 4.14 hacen ver que para el primer escenario las longitudes de mezcla son menores que para el segundo escenario.
- La conclusión anterior, nos permite entender por qué en el transporte de productos del petróleo a través de poliductos, los productos de menor densidad en grados API son los primeros que se inyectan a la línea, seguidos de lotes de productos con un grado API más alto, consiguiendo unas longitudes de mezclas menores. Si se sigue este patrón de bombeo (°API alto - °API bajo) en el caso del transporte segregado

de crudo usando raspatubos, el volumen de crudo que pasa aguas abajo del raspatubo depende directamente de la cantidad de imperfecciones que pueda tener un ducto; para una mayor cantidad de imperfecciones se obtendrán mayores volúmenes de mezcla en el frente aguas abajo del raspatubo pero menores longitudes de contaminación, mientras que si se cambia el patrón de bombeo (°API bajo - °API alto) para las mismas imperfecciones, se obtendrán volúmenes de mezcla menores en el frente aguas abajo del raspatubo pero mayores longitudes de mezcla. En consecuencia para obtener una menor longitud de mezcla en el frente aguas abajo del raspatubo conviene un patrón de bombeo °API alto - °API bajo. Sin embargo, es recomendable estudiar también la longitud de mezcla del frente aguas arriba del raspatubo para determinar cuál sería la configuración de bombeo más conveniente desde el punto de vista de la contaminación del crudo.

- Se observa que al aumentar la presión en la zona 5, la longitud del frente de mezcla disminuye. El modelo de difusión empleado en la simulación tiene en cuenta sólo el efecto del gradiente de concentraciones, en vista del resultado mencionado sería recomendable incluir en el modelo de difusión el efecto del gradiente de presión.
- La velocidad del raspatubo está relacionada con la fuerza normal que los discos o copas ejercen sobre el ducto. La fuerza normal de 3845.6 N corresponde a un raspatubo con dos discos, esta fuerza junto con otras variables determinan una reducción de velocidad del raspatubo respecto al flujo. De no seleccionarse los discos y copas adecuados para cada raspatubo o de no realizarse una instalación precisa de los mismos, la fuerza normal crecería y ante el aumento del número de discos y/o copas, la diferencia de velocidad del crudo que atraviesa el raspatubo (e incremento en el caudal) generando frentes de contaminación más grandes.
- El tiempo de simulación de 9.5 segundos fue determinado considerando el tiempo que demora un raspatubo en atravesar imperfecciones con dimensiones alrededor de los 1.2 metros cuando se desplaza a una velocidad de aproximadamente 1.2 m/s. Dicho tiempo de simulación debe ser ajustado para cada tipo de raspatubo que se quiera simular y en base al tipo de imperfección que se tenga.
- La luz equivalente de separación debe obtenerse experimentalmente a partir del volumen total de crudo que cruza el raspatubo. Dado que no ha sido posible obtener dicho dato, se ha considerado el valor de 1mm, el cual debería ser validado.
- El presente trabajo supone que la velocidad del raspatubo siempre es la misma a lo largo del ducto, sin embargo, sería muy útil para un mejor entendimiento de los fenómenos que ocurren en el transporte segregado usando raspatubos, conocer cómo sería la posición, velocidad y aceleración de un raspatubo en su movimiento a lo largo del ducto partiendo desde el reposo.

BIBLIOGRAFÍA

- [1] ANSYS 14.5 Help Workbench 14.5.
- [2] Atluri S., Liu N., Sablok A., Weaver T., Dynamic analysis of riser release and lowering. ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering OMAE2010. June 6-11, Shangai, China (2010).
- [3] Azevedo L. F. A., Braga A. M. B., Nieckele A. O., and Naccach M. F., Simple Hydrodinamic Models for the prediction of pig motions in pipelines. Pontificia Universidade Católica do Rio de Janeiro, and M. G. F. M. Gomes, Petrobras S.A. OffShore Technology Conference, 1996.
- [4] Baehr H. D., Stephan K., "Heat and mass transfer". 2nd Edition. Springer Berlín 2006.
- [5] Cafaro C. (2009). Programación óptima de operaciones en sistemas de transporte de combustibles múltiples a través de poliductos. Tesis Doctoral. Universidad Nacional del Litoral. Santa Fe, Argentina.
- [6] Concha A, Quiroga H y Benjumea P. N., Modelamiento de la propagación de los frentes de contaminación generados por el transporte de combustibles por poliducto. Dyna, Año 74, Nro. 152, pp 89-96. Medellin, Julio de 2007. ISSN 0012-7353.
- [7] Douglas M. Considine, Tecnología del Petróleo *Redactado por 142 especialistas*.Publicaciones Marcombo. S.A.
- [8] Fox R., McDonald A., "Introducción a la mecánica de fluidos", School of Mechanical Engineering Purdue University. 2nd Edition.
- [9] García A. y Southwest Research Institute. Modeling and Simulation Case Study of a batching operation of crude oils in a pipeline system. PSIG Annual Meeting. 25 de mayo 2011. Napa Valley, California.
- [10] González Carbonell R.A., Álvarez García E., Moya Rodríguez J. L., Abreu González K. Modelos de materiales hiperelásticos para el análisis de los elastómeros usando el MEF. Revista Facultad de Ingeniería Mecánica. Instituto Superior Politécnico José Antonio Echevarría. ISSN 1815-5944 (2009).
- [11] Khalil M.F., Kassab S.Z., Adam I.G., Samaha M.A., Turbulent flow around single concentric long capsule in a pipe. *Journal of Applied Mathematical Modelling 34* (2010) 2000-2017.
- [12] Kosugi S., A basic study on the design of the pneumatic capsule pipeline system, Ph.D. dissertation, Osaka University, Osaka, Japan, (1985).
- [13] Liu H., Pipeline Engineering, Lewis Publishers, A CRC Press Company, USA, 2003.

- [14] O'Donoghue A. F., On the Steady Motion of conventional pipeline pigs using incompressible drive media. PhD Thesis. School of Mechanical Engineering. Cranfield University, 1996.
- [15] O'Donoghue A. F., Why pigs get stuck and how to avoid it. Pipeline Research Limited, Glasgow, UK.
- [16] Ohashi A., Yanaida K., The Fluid Mechanics of Capsule Pipelines. JSME, Vol.29, No.258 (1986).
- [17] Patrachari A. R., Johannes A. H., A conceptual framework to model interfacial contamination in multi-product petroleum pipelines. *International Journal of Heat and Mass Transfer55 (2012) 4613-4620*.
- [18] Sutherland B. R, D. Van Vliet, Dohan K. and Moodie T. B. Interfacial mixing in viscous pipe flows. University of Alberca. Edmonton, AB T6G 2G1, Canada.
- [19] Taylor G.I., Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 219 (1137) (1953) 186-203.
- [20] Tiratsoo J. N. H., Pipeline Pigging Technology, Gulf Professional Publishing, 2nd Edition, 1992.
- [21] Tomita Y., Fujiwara Y., Capsule Velocity in Pipelines. JSME International Journal.Series II, Vol.35, No. 4 (1992).
- [22] T. D WILLIAMSON January 1993, TDW Pub No 30138. Bulletin Number 351.
- [23] Vincent J. Genod. "Fundametals of pipeline engineering" Editions Technip 1984. ISBN 2-7108-0466-2.
- [24] Udoetok E. S., Nguyen A.N., A disc pig model for estimating the mixing volumes between product batches in multi-product pipelines, *Journal of pipeline engineer* (2009) 195-201.